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A B S T R A C T

Although most of the literature on traffic safety analysis has been developed over areal zones, there is a growing
interest in using the specific road structure of the region under investigation, which is known as a linear network
in the field of spatial statistics. The use of linear networks entails several technical complications, ranging from
the accurate location of traffic accidents to the definition of covariates at a spatial micro-level.

Therefore, the primary goal of this study was to display a detailed analysis of a dataset of traffic accidents
recorded in Valencia (Spain), which were located into a linear network representing more than 30 km of urban
road structure corresponding to one district of the city. A set of traffic-related covariates was constructed at the
road segment level for performing the analysis. Several issues and methodological approaches that are inherent
to linear networks have been shown and discussed. In particular, the network was defined in a way that allowed
the explicit investigation of traffic accidents around road intersections and the consideration of traffic flow
directionality.

Zero-inflated negative binomial count models accounting for spatial heterogeneity were used. Traffic safety at
road intersections was specifically taken into account in the analysis by considering the higher variability and
number of zeros that can be observed at these road entities and the differential contribution of the covariates
depending on the proximity of a road intersection. To complement the results obtained from the count models
fitted, coldspots and hotspots along the network were also detected, with explanatory objectives.

The models confirmed that spatial heterogeneity, overdispersion and the close presence of road intersections
explain the accident counts observed in the road network analyzed. Hotspot detection revealed that several
covariates whose contribution was unclear in the modelling approaches may also be affecting accident counts at
the road segment level.

1. Introduction

Traffic accidents are still a quite frequent cause of death for the
European population, especially in the younger age groups. Even
though the number of accidents has gradually decreased in the most
developed countries of the world during the last decade, many efforts,
in terms of prevention and road planning, are still being made to reduce
their occurrence and severity. In this regard, studies aimed at analyzing
the occurrence and distribution of traffic accidents can be very helpful,
and could be broadly classified according to three main objectives:
finding road and/or traffic characteristics associated with a higher oc-
currence of accidents, detecting zones with a high concentration of
accidents and discovering the types of accidents that tend to produce
more serious consequences for the vehicle passengers or road users
involved. In this paper, the modelling of accident counts at the road

segment level with explanatory purposes is the main goal, although the
detection of microzones of the network that show a singular risk of
accident is also carried out. This section starts with a literature review
on both topics: modelling traffic accidents outcomes and finding zones
of high accident risk. This is followed by a review of the literature on
the analysis of traffic accidents occurring in intersection and non-in-
tersection zones. This issue has also been addressed in the analysis
contained in this paper.

1.1. Review of models and methods

Many important quantitative studies that have focused on factors
that may be affecting traffic safety have been carried out through areal
units of analysis. For instance, Quddus (2008) modelled traffic accident
counts at the census ward level, which made it possible to explain the
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number of accidents from information related to traffic characteristics
(volume and speed), road design and socio-demographic factors. Traffic
volume and a proxy for poverty showed a significant positive associa-
tion with traffic accidents. Similarly, Huang et al. (2010) studied traffic
accident frequency at the county level considering traffic-related, de-
mographic and socioeconomic characteristics of the counties being
studied. This work focused on distinguishing two types of exposure
variables: population and average daily vehicle miles travelled (DVMT)
per county. The model using DVMT as the exposure yielded more sig-
nificant associations with traffic accidents, some of which were positive
(traffic intensity, density of principal and minor arterials, and percen-
tage of young population) and others were negative (freeway density
and average travel time to work).

In order to favour more accurate investigations, road networks have
increasingly been used in traffic safety analysis in the last few years.
The use of these structures, composed of links (segments) and vertices
(points where two or more links meet), is becoming more popular, in
spite of the technical difficulties their use entails. In this regard, it is
worth noting that many of the factors that have been proved to gen-
erally increase the occurrence of traffic accidents require a road seg-
ment level analysis. Indeed, the list of infrastructure characteristics that
were determined to be risky for drivers and users in a recent systematic
review of published studies by Papadimitriou et al. (2019) included
traffic volume, road surface (low friction), low curve radius, number of
lanes, absence of paved shoulders, narrow shoulders, different junction
types, etc. Although an areal-based analysis may also help to gain
knowledge about the association of traffic accidents with any of these
road characteristics, a road segment level analysis would be re-
commended to guarantee an appropriate investigation.

Given the convenience of using road networks for analyzing traffic
accident outcomes, this paragraph includes a description of several
studies that were performed at the road segment level, which enabled
their corresponding authors to properly investigate certain infra-
structure characteristics. For example, Aguero-Valverde and Jovanis
(2008) found a positive association of traffic volume and certain
shoulder widths with traffic accidents. In addition, Guo et al. (2017)
developed a measure (integration) which reflects the accessibility of a
node in the network, depending on its neighbourhood geometry. It was
found that networks with a high integration value, which usually re-
semble a grid pattern, tend to be associated with more traffic accidents.
Finally, Barua et al. (2016) analyzed severe and no-injury traffic acci-
dents at the road segment level, finding that road segment length,
average annual daily traffic, density of unsignalized intersections,
business land use and the number of lanes showed a significant and
positive association with both accident types.

On the other hand, several studies that have incorporated linear
networks to treat accident datasets have only focused on detecting
zones with a high concentration of accidents (hotspots). Indeed, Huang
et al. (2016) suggested that the detection of hotspots at the micro-level
is more accurate and useful for revealing risky road configurations than
the use of areal macro-zones. For example, Xie and Yan (2013) applied
kernel density estimation (KDE) to a linear network structure to eval-
uate distribution of traffic accidents and to find clusters of roads with a
high proportion of accidents. They studied the impact of subdividing
the network into shorter spatial units (segments), called lixels (Xie and
Yan, 2008), and the variations observed depending on the choice of the
kernel bandwidth parameter. A similar approach was taken by Nie et al.
(2015) to prove that the application of network KDE improved the
performance of local indicators of spatial association (LISA) to better
identify accident hotspots.

To finish our literature review, we need to highlight certain aspects
that deserve attention every time a statistical modelling of accident
counts is performed. First, regardless of the choice of areal units or road
segments for conducting the analysis, the consideration of spatial ef-
fects has almost become a requirement (Mannering and Bhat, 2014;
Mannering et al., 2016). Getting back to some of the studies described

above, some of them showed that the use of non-spatial models can lead
to either spatially autocorrelated model residuals Quddus (2008),
Huang et al. (2010) or to a significantly lower fit to the data (Aguero-
Valverde and Jovanis, 2008). Both facts suggest that overlooking spatial
effects is inappropriate. Moreover, Xu et al. (2017) tested a modifica-
tion of the model proposed in Huang et al. (2010) that allowed the
effects of the covariates to vary spatially. These authors observed that it
is even advisable to include such variations, as otherwise biased esti-
mates of the model's coefficients may arise.

Besides the consideration of spatial heterogeneity, other issue that
often arises when performing a road segment level modelling of acci-
dent counts is the high presence of zeros (segments where no accident
has been recorded). Zeng et al. (2017) used a Tobit model to control for
left-censored accident rates that may be the consequence of under-re-
porting. Speed was associated with higher crash rates, whereas average
annual daily traffic displayed a significant negative correlation.
Anastasopoulos (2016) compared multivariate Tobit and zero-inflated
models for modelling accident counts with a high percentage of zeros.
Both strategies showed their own limitations, but each was capable of
capturing zero-state heterogeneity across the road network.

1.2. Traffic safety at road intersections

The high rates of traffic accidents that are usually observed in
proximity to road intersections is the reason for the existence of many
studies on this topic. Thus, this paragraph includes a literature review
(in chronological order) on the topic of modelling the occurrence of
traffic accidents around road intersections. For instance, Castro et al.
(2012) studied the spatio-temporal incidence of accident counts at
urban intersections. It proved to be advisable to consider both the
spatial and the temporal effect, and a significant effect was found for
roadway configuration, approach roadway typology and traffic flow,
among other factors. Xie et al. (2014) also developed several modelling
approaches to analyze accident occurrence at intersections. The con-
sideration of a hierarchical spatial model accounting for the effects
produced at intersections by contiguous segments (corridor-level)
clearly outperformed the rest of the models applied. Huang et al. (2017)
analyzed accident counts at road intersections considering types of
users (pedestrians, bicycles or motor vehicles) involved in accidents
with a multivariate Poisson lognormal regression model. Moreover, Lee
et al. (2017) used a mixed effects negative binomial model accounting
for macro-level and micro-level factors to study accident counts at road
intersections. Several covariates constructed at both levels of spatial
resolution were found to be associated with more accidents at inter-
sections. Cai et al. (2018) implemented a grouped random parameters
multivariate spatial model at two levels, segments and intersections.
Covariates were defined separately over segments, intersections and
wider zones (allowing the inclusion of covariates, such as socio-eco-
nomic characteristics, at a lower spatial resolution). Zhao et al. (2018)
used multivariate Poisson log-normal and zero-inflated univariate and
multivariate Poisson models to study accident frequency (by severity
level) at signalized intersections, consisting of the road segments at 200
ft upstream from the signal controlling the intersection. Lastly, Alarifi
et al. (2018) proposed the use of a multivariate hierarchical Poisson
lognormal model that accounts for the spatial relationships between
road segments and intersections located along the same corridor.
Average annual daily traffic variables at roadway segments and inter-
sections, absolute speed limit difference between a major and a minor
road meeting at an intersection, and driveway density showed positive
associations with the number of traffic accidents.

With regard to the distance threshold of 200 ft chosen by Zhao et al.
(2018), it needs to be highlighted that the definition of intersection-
related traffic accidents presents a low level of agreement. For instance,
Miaou and Lord (2003) considered a distance of 15 m (≃50 ft) from
intersection locations, Ye et al. (2009) 75 m (≃250 ft), Zhao et al.
(2018) 60 m (≃200 ft) and Das et al. (2008) analyzed the range 0 to 60
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m at increments of 15 m. Furthermore, besides the lack of agreement,
intersection zones are not clearly defined in many of the papers in the
field. Finally, it is also highly remarkable how several of these papers
focused entirely on intersection entities alone, avoiding consideration
of the road segments surrounding intersections. Although Lee et al.
(2017) and Cai et al. (2018) considered zonal effects that were shared
by close segments and intersections, only Alarifi et al. (2018) have
conducted a unified consideration of road segments and intersections.
In this regard, Miaou and Lord (2003) pointed out the advisability of
modelling data taking all kind of road entities simultaneously, which
according to these authors would include segments, intersections and
ramps. The implicit assumption of independence between entities may
lead to ignoring many important spatial relationships that are likely to
exist between them.

This study presents a statistical modelling of traffic accidents at the
road segment level. In order to represent true neighbouring relation-
ships between road segments, a directed road network structure ac-
counting for traffic flow has been used. In summary, we had three
methodological objectives: to present and discuss some issues that arise
when conducting a spatial analysis of traffic accidents located on a road
network, to analyze traffic accidents at road intersections, including a
specific strategy that draws together both road intersection and non-
intersection zones along the network, and to combine the results pro-
duced by the two statistical approaches finally chosen, spatial count
models and coldspot/hotspot detection, in order to achieve more
complete conclusions regarding the effect of various road character-
istics on the occurrence of traffic accidents for the road network of
interest.

The rest of the paper is structured as follows. The next section
contains a complete description of the data employed for the analysis,
including the traffic accident dataset recorded during the period of
study and the network structure that represents the underlying space
where these accidents occurred. This is followed by a methodological
section that provides a description of the procedure followed to include
the consideration of intersection zones, the definition of spatial neigh-
bourhoods between road segments of the network, the specification of
the spatial count models used to fit the data, the methods employed to
assess the performance of such models, the definition of one class of
network-constrained kernel density estimation and the procedure ap-
plied to locate zones of high and low risk along the network. Finally,
there is a discussion of the performance and implications of the
methods applied.

2. Data

2.1. Accident information

A total of 5738 traffic accidents recorded by the Local Police
Department of the city of Valencia (Spain) during the years 2005 to
2017 in the Eixample District of the city were used. Each of these ac-
cidents was geocoded from the address information recorded by the
Police minutes after the accident had occurred. Once the coordinates of
each accident were obtained, these were projected onto a linear net-
work representing the traffic streets of the Eixample District of
Valencia. This two-stage process was supervised by all the authors in
order to ensure a high level of accuracy.

2.2. Network structure

A linear network composed of 279 vertices and 444 road segments,
representing a total length of 33.57 km, was used for the analysis. The
vertices where more than two segments meet correspond to road in-
tersections, which were 227 in the case of this network. Fig. 1a contains
a map (Graul, 2016; OpenStreetMap contributors, 2017) that shows the
zone of the city of Valencia where the road network of interest is lo-
cated. Some parts of this network were previously simplified without

altering its basic geometrical structure in order to reduce the number of
short road segments which could hinder the subsequent modelling of
the data. Moreover, network preprocessing included the slight mod-
ification of highly complex intersections and the removal of pedestrian
streets, which were performed with the SpNetPrep R package (Briz-
Redón, 2019).

In addition, for the purpose of improving the analysis, the network
was given directionality according to the traffic flow of this district of
Valencia as of the end of December 2017 (see Fig. 1b). Some of the road
segments of the network were defined as bidirectional, representing
two-way streets present in the district where no median strip separates
the two flows of vehicles. However, bidirectional road segments were
only 5% of the total, a fact that completely justifies the definition of
traffic flow directionality along the network. In addition, for road
segments divided by a median strip two (parallel) road segments were
available in the network at a distance proportional to the width of the
strip.

Finally, the possible changes in direction of traffic that could have
been made during the period of years considered have not been taken
into account due to the difficulty of tracking them. However, as
Eixample District is very close to the centre of Valencia and is part of a
very well-established area of the city, it can be assumed that changes of
traffic direction must have been minimal in the period 2005–2017.

2.3. Network-related covariates

Several factors that could be associated with vehicle collisions are
considered at the road segment level. These mainly include the pre-
sence of specific public services in the road segment (parking slots,
traffic lights and bus stops) and basic characteristics of the roads that
the links in the network represent. The latter include the number of
lanes in the road, the presence of a bus lane (binary), the type of road
(main or not, binary), the number of roads that directly connect to each
road segment of the network, distinguishing whether they allow traffic
to enter or leave it, a categorical covariate representing average annual
daily traffic (AADT) and a categorical covariate assigning a geometric
typology to each road segment (this one is described in the
Methodology). In this regard, we should note that AADT is not available
for every road segment in Valencia, but only for the most travelled
avenues and streets. Hence, the data available was used to define a 5-
level categorical covariate representing the following ranges for
AADT:< 7000 (level 1), 7000–16000 (level 2), 16000–25000 (level 3),
25000–55000 (level 4) and> 55000 (level 5). These ranges represent
the least travelled road segments of the city for which scarce data is
available (level 1) and the four quartile-based intervals that follow from
the available AADT values (levels 2 to 5). It is worth noting that the
strategy of categorizing AADT values has already been tested by several
authors (Hao and Daniel, 2014; Fan et al., 2015; Yasmin et al., 2016).

Furthermore, numbers of lanes and neighbouring roads (referred to
here as neighbours) were truncated and recoded for values higher than
5 and 3, respectively. To obtain the number of neighbours the network
that was considered was actually an extension of the final one employed
for the analysis, in order to avoid an unrealistic low number of neigh-
bours for the road segments at the edge of the network. Finally, as the
network of study represents a fairly small and homogeneous population
area, we concluded that the inclusion of demographic or socioeconomic
variables was not of interest. Table 1 includes a description and sta-
tistical summary of the covariates introduced in this section.

3. Methodology

3.1. Software

The R programming language (3.4.1 version, R Development Core
Team, Vienna, Austria) (R Core Team, 2017) was used to obtain all the
results presented in this study. The R packages bayesplot (Gabry and
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Mahr, 2018), brms (Bürkner et al., 2017), ggmap (Kahle and Wickham,
2013), spatstat (Baddeley et al., 2015), spded (Bivand and Piras, 2015)
and SpNetPrep (Briz-Redón, 2019) were specifically required for per-
forming the analysis and the data curation process.

3.2. Definition of intersection zones

In order to capture the differential risk between road locations
around intersections and road segments between them, the original
network structure was modified by creating shorter road segments in
the proximity of each road intersection. The insertVertices function of
the R package spatstat (Baddeley et al., 2015) was key for performing
this task.

Specifically, road segments of 20 meters were inserted around in-
tersection neighbourhoods (so that the furthest point of the segment
from the intersection was at a distance of 20 m), which were de-
termined to be intersection analysis zones (IAZs). On the other hand,
segments not satisfying this condition, most of which are between two
IAZs, were declared as middle analysis zones (MAZs). Thus, the original
network of study was divided into 683 IAZs and 292 MAZs, leading to
the formation of a new road network (referred to from now on as a split
network) made up of 810 vertices and 975 road segments (the original
had 279 vertices and 444 road segments). As an illustration, Fig. 2
displays the distribution of IAZ and MAZ along the split network.

Therefore, the definition provided for IAZ and MAZ allowed for the
coexistence of street zones subject to different rules and causalities
while being represented by a unique geometrical entity: the road seg-
ment (note that the sum of the number of IAZ and MAZ coincides with
the number of road segments of the final network). This fact led to a
unified definition of neighbourhood relationships and covariates for the
two types of zone that mainly arise when dealing with traffic accident
datasets. Indeed, the term segment is used without distinction for both
types of zone throughout the paper, even though in related literature it
is only used for what it has been defined as MAZs.

The choice of a distance of 20 meters was mainly based on knowl-
edge of the road network of study and on similar distances used in
literature (Miaou and Lord, 2003). Indeed, this distance allows a fair
representation of IAZs as intersection-approaching or intersection-
leaving segments. The selection of a shorter threshold distance was
rejected due to the lack of sufficient certainty on the data collection
procedure to guarantee the correct location of accidents at such a level
of resolution around intersections. Furthermore, the objective was to
employ the road segment as the only spatial unit of study, and this
would be undermined if a threshold very close to 0 were chosen (as the
IAZ would almost become the intersection point itself).

Regarding the definition of the covariates at the level of the new

Fig. 1. Road structure of study displayed over a map of the city of Valencia (a) and its representation as a linear network made of links and vertices, with arrows
indicating traffic flow directionality (b).

Table 1
Variables description and basic statistics, where SD denotes the standard deviation.

Variable Description Mean SD

Main road Main road segment of the city (binary) 0.626 0.484
Parking slots Existence of public parking slots in the road segment (binary) 0.613 0.671
Traffic light Presence of a traffic light in the road segment (binary) 0.617 0.487
Bus stops Existence of public bus stops in the road segment (binary) 0.110 0.314
Bus lane Presence of a bus lane in the road segment (binary) 0.572 0.495
No. of lanes Number of traffic lanes in the road segment 2.176 1.349
No. of in-neighbours Number of neighbouring road segments allowing traffic to enter the road segment 1.770 0.631
No. of out-neighbours Number of neighbouring road segments allowing traffic to leave the road segment 1.775 0.629
AADT Average annual daily traffic (5 levels) 2.286 1.539

Fig. 2. Graphical description of the split network showing the locations of IAZs
and MAZs.
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split road network, these simply follow the values available for the
original network. Hence, each IAZ or MAZ of the split road network
acquires the value (for a given covariate) of the corresponding whole
road segment in the original non-split network. An exception was made
with traffic lights, given their frequent location around road intersec-
tion zones. For this reason, a value of 1 was assigned to an IAZ or MAZ
for the indicator related to traffic light presence if and only if a traffic
light was present in the same road segment (before splitting) at a dis-
tance lower than 20 m from the middle point of the IAZ/MAZ. As an
illustration, Fig. 3 provides a graphical description of every covariate
considered for the analysis, which enables us to appreciate the dis-
tinction made for traffic lights (Fig. 3c).

3.3. Concept of neighbourhoods

The road segments that form the already defined directed network
structure constitute the basic spatial units on which to perform the
statistical analysis. Given a road segment, i, in the directed linear net-
work, its neighbourhood, N(i), can be defined in four different ways
depending on whether the traffic flow information available is used. At
the simplest level, if this information is not used, two road segments i
and j are neighbours if they are connected by a vertex of the network.
However, the use of the traffic flow leads to the definition of three other
types of neighbourhoods. First, neighbourhood between i and j can be
established if it is possible to travel from i to j or from j to i, in either
direction, without passing through another road segment of the net-
work; this is denoted Ndir(i). In addition, if a distinction is made be-
tween travelling from i to j or vice versa, it is possible to separate the
neighbouring road segments that allow you to reach i (N i( )dir

in ) from
those that allow you to leave from i to another road segment of the
network (N i( )dir

out ) (see Fig. 4 for examples of all these types of neigh-
bourhood). From now on these last two types of neighbours are referred
to as in-neighbours and out-neighbours, respectively.

The four definitions of neighbourhood structures can lead to the
construction of four different adjacency matrices. Thus, a Wdir matrix
based on Ndir neighbourhoods was the only one employed as it was
considered the most suitable for the goals established. Regarding this
matrix, its entries, wij, are called weights and it holds that =w N i1/| ( )|ij ,
if j∈N(i) (row normalization), and 0 otherwise.

3.4. Road segment neighbourhood geometry

The geometric structure surrounding each road segment of the
network was studied, a procedure made possible by the road network
structure. Given a road segment of the network, the factors considered
for each neighbouring road segment were the neighbourhood type (in
or out) and the angles formed between the road segment and its
neighbours. Road segment length and the number of in and out
neighbours were also included to better discriminate between road
segments. As was done with the other covariates previously defined
(with the exception of the indicator factor for traffic lights), the geo-
metry is studied from the perspective of the original network. Later, the
values obtained are assigned to the road segments of the split network
accordingly.

A total of six types of neighbours were defined by combining the
angles of the road segments and the direction of the traffic. Angles
between road segments were classified (measured in [0°, 180°]) into
three groups: straight (]150°, 180°]), right (]60°, 120°[) and sharp ([0°,
60°]⋃[120°, 150°]). Each of these types of angle was then crossed with
the in/out information associated with each neighbouring road segment
to create the six possible scenarios.

The same strategy was followed with the lengths of the neigh-
bouring road segments. In this case, the road segments were divided
into three groups (short, medium and long) according to the 33.33%
and 66.67% quantiles of the road segment length distribution. Again,
the three groups created were crossed with the in/out information,

Fig. 3. Graphical description at the road segment level of the following network-related variables: (a) main road indicator, (b) parking slot presence, (c) traffic light
presence, (d) bus stop presence, (e) bus lane presence, (f) number of lanes, (g) number of in-neighbours (h) number of out-neighbours and (i) AADT.

Fig. 4. Examples of types of neighbourhood in a directed linear network. The
six road segments that are contiguous to road segment i allow the construction
of the neighbourhoods N(i)= {a, b, c, d, h, j}, Ndir(i)= {b, d, h, j},

=N i b h( ) { , }dir
in and =N i d j( ) { , }dir

out .
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producing six new classification groups.
The k-means algorithm (Hartigan and Wong, 1979) was then ap-

plied to a total set of fifteen geometric-related variables for each of the
road segments: the number of neighbours belonging to each of the six
angle-direction and length-direction combinations, the road segment
length and the number of in and out neighbours. A value of k=4 was
chosen, since convergence was not reached for higher values of k, and
this made it possible to form four clusters of 42, 130, 163 and 109 road
segments, respectively.

Table 2 summarizes the mean values for the variables employed in
the clustering procedure and Fig. 5 includes the graphical representa-
tion of the four clusters and an example of construction of the geo-
metric-related variables for a specific road segment. According to these
results, Cluster 2 is mainly composed of medium-long road segments
with a high average number of neighbouring road segments that form a
right angle, which is associated with being part of a crossroads (90-
degree intersection). Cluster 3 is formed by very short road segments, a
high proportion of which involve acute angles, representing abrupt
changes of direction in the directed network. Cluster 1 clearly presents
the highest road segment length and an high number of neighbours.
Finally, Cluster 4 is made up of short-medium length road segments and
quite high connectivity with short-length road segments compared with
Clusters 1 and 2.

3.5. Accident count modelling

A Bayesian spatial model with Zero-Inflated Negative Binomial re-
sponse (ZINB) was implemented to fit the observed accident counts for
the split network structure (composed of 975 road segments). If Y∼ NB
(μ, ψ) (basic negative binomial distribution of mean μ and shape ψ) then
it holds that E(Y)= μ, = +V Y μ( ) μ

ψ

2
and

= = + −
− + +P Y x( ) ( )( ) ( )x ψ

ψ
ψ

μ ψ
ψ μ

μ ψ
x1

1 . The zero-inflated version of the NB
distribution acts as a double-stage process that makes it possible to
increase the probability of value 0. Thus, if z denotes the structural
probability of 0 for the ZINB distribution, its probability mass satisfies
the next stepwise function:

= = ⎧
⎨⎩

+ − = =
− = >

P Z
z z P Y x

z P Y x x
( 0)

(1 ) ( 0), 0
(1 ) ( ), 0

where Y∼ NB(μ, ψ) and Z∼ ZINB(μ, ψ, z).

Then, on the basis of the choice of a ZINB distribution for the re-
sponse (accident counts) the next spatial model (Model 1) was speci-
fied:

∼Y μ ψ zZINB( , , )i i

= + +βμ ϕxlog( ) log(Length ) (Model 1)i i ii

where Yi is the number of accidents observed at road segment i, μi and ψ
are the mean (for road segment i) and overdispersion (shape) values for
the ZINB distribution, z is the probability of value 0 for the ZINB dis-
tribution, the natural logarithm acts as a link function for the mean risk
at segment i (μi), the natural logarithm of each segment's length is
added as an offset, xi is a vector that contains the values for the cov-
ariates described in Table 1 corresponding to segment i along with a
factor indicating whether the road segment belongs to the IAZ class, β is
a vector of coefficients to control the effect of these predictors and ϕi

represents a spatial effect for road segment i.
The spatial effect was modelled using a conditional autoregressive

(CAR) structure (Besag, 1974; Besag et al., 1991):

∑∣ ≠ ∼
=

−ϕ ϕ j i N α w ϕ τ, ( , )i j
j

n

j i
1

ij
1

where α∈ [0, 1] is a spatial dependence parameter that measures the
strength of spatial autocorrelation (α=0 reflects the complete absence
of such effect), τi is a precision parameter that varies with i and wij the
entry at the (i, j) position of the neighbourhood matrix Wdir

( = ∀w i0,ii ).
In particular, the joint distribution of Φ=(ϕ1, .. ., ϕn) satisfies the

Gaussian multivariate probability distribution (Banerjee et al., 2004):

∼ − −N τ D αWΦ (0, [ ( )] ).dir
1

where D is a diagonal matrix that contains the number of in- and out-
neighbours of each spatial unit.

Moreover, a second model (Model 2) specifically focused on the
effect of the covariates on IAZs was implemented with the following
linear predictor for log(μi):

= + + +β γμ I ϕx xlog( ) log(Length ) (Model 2)i i ii i IAZ

where IIAZ is an indicator function for IAZ and γ represents the vector of
coefficients that measure the effect of the covariates at IAZ. Hence,
Model 1 only considers the effect of IAZ as one of the factors being

Table 2
Mean values of the variables used to perform the clustering of the road segments according to their geometry.

Cluster Straightin Rightin Sharpin Straightout Rightout Sharpout Shortin Mediumin Longin Shortout Mediumout Longout Length N| |dir
in N| |dir

out

1 0.45 0.81 0.48 0.40 0.74 0.74 0.21 0.64 0.88 0.29 0.69 0.90 170.66 1.83 1.98
2 0.45 0.93 0.63 0.42 0.98 0.59 0.28 0.58 1.15 0.27 0.57 1.15 115.84 2.17 2.11
3 0.21 0.46 0.88 0.21 0.52 0.86 0.75 0.48 0.31 0.74 0.50 0.34 23.80 1.58 1.61
4 0.25 0.59 0.84 0.29 0.53 0.78 0.53 0.75 0.39 0.52 0.77 0.31 68.40 1.77 1.78

Fig. 5. (a) Clustering of the road segments of the spatial network
according to their neighbourhood geometry. (b) Detailed neigh-
bourhood of an road segment, i, of the directed network. Six road
segments share a vertex with i, but only four of these allow traffic
to flow from i or to i. The values of the geometric variables for
road segment i are: Straightin = 1, Rightin = 0, Sharpin = 1,
Straightout = 1, Rightout = 0, Sharpout = 1, Shortin = 1, Mediumin

= 1, Longin = 0, Shortout = 1, Mediumout = 0, Longout = 1,
Length = 41.7, =N i| ( )| 2dir

in , =N i| ( )| 2dir
out .
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studied, whereas Model 2 allows the determination of the differential
effect that each covariate can produce at the road segment level de-
pending on the zone of analysis (IAF or MAF). Furthermore, for these
two models, the inflation probability, z, was modelled through a logit
equation that makes it possible to estimate a different value of z for
each zone type:

= + ⟷ =
+

+ +
z z z I z

z z I
z z I

logit( )
exp( )

1 exp( )Intercept Slope IAZ
Intercept Slope IAZ

Intercept Slope IAZ (1)

where IIAZ is again an indicator function for IAZ.
The estimation of the parameters of the two models was performed

with the brms R package (Bürkner et al., 2017), which is based on the
statistical software Stan (Carpenter et al., 2017).

3.6. Model checks

Several techniques were applied in order to check for the propriety
of the different models employed for representing the observed accident
counts. In this section, the methods used for this task, which included
conditional predictive ordinate (CPO), general correlation coefficients
and Moran's I, are briefly described.

The CPO method (Stern and Cressie, 2000; Marshall and
Spiegelhalter, 2003) requires data simulation from the posterior dis-
tribution of a fitted Bayesian model. Indeed, if the values for the cov-
ariates of the models are left fixed as in the data used to fit the model,
the accident counts simulated at each draw behave like replicates of the
original counts (y) and are denoted by Yrep (Gelman et al., 2013). If a
model represents the counts properly, the observed counts should agree
with the distribution of a simulated dataset of Yrep. Then, a high de-
parture between y and Yrep may indicate a poor performance from the
model. In this regard, CPO is a simulation-based tool that has already
been used in similar research studies (Yang et al., 2013; Xie et al., 2014)
with the main purpose of identifying outliers within the data, which in
this case correspond to road segments. For this purpose, the distribution
of Yi

rep for every spatial unit (road segment) i is evaluated from all the
original data except yi itself (in a similar way to the leave-one-out cross-
validation procedure). Thus, the goal is to find spatial units whose
observed count value is far enough from the simulated distribution of

−Y y|i i
rep , where y−i denotes the original data with the exclusion of yi. The

determination of a p-value that tests this question for unit i is done
through a reweighting of the Yrep with the choice of the following
weight:

=−ρ
P y

1
( |Λ )i

k

i
k

( )
( )

where k is the index for the simulation, yi is the number of accidents
observed for spatial unit i, Λ(k) represents the parameters sampled for
the model at simulation number k (which includes the corresponding
values for λi's, ψ, z and Φ) and P represents the probability function of a
ZINB distribution that follows the parameters in Λ(k). Then, a p-value
that allows outlier identification is approximated with the next ex-
pression (Marshall and Spiegelhalter, 2003):
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∑ =

∑
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∑ =

∑
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=

−
= −

= −

= −

= −

P Y y y
P Y g ρ

ρ

P Y y ρ

ρ

( | )
( |Λ )

1
2

( |Λ )

i i i
g

y
k
K

i
k

i
k

k
K

i
k

k
K

i i
k

i
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i
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0

1
1

rep ( ) ( )

1
( )

1
rep ( ) ( )

1
( )

i

(2)

General correlation coefficients are an extension of Pearson's cor-
relation coefficient (Pearson, 1896) making it possible to compare two
possibly related numerical vectors of the same length. Specifically, it
can be employed to compare the distribution of ranks shown by the
observed accident counts and the counts fitted by any statistical model
applied. The formula for a general correlation coefficient, Γ, is:

=
∑

∑ ∑
= =

= = = =

a b

a b
Γ i j

n

i j
n

i j
n

1, 1 ij ij

1, 1 ij
2

1, 1 ij
2

where the coefficients aij and bij must be anti-symmetric (aij=− aji,
bij=− bji). As two important particular cases, if robs and rexp denote the
ranks (in decreasing order) of the observed and fitted accident counts
per spatial unit (respectively), the following choices of aij and bij cor-
respond to Kendall and Spearman correlation coefficients (Kendall,
1938; Spearman, 1904):

= − = −a r r b r rsgn( ), sgn( )i j i jij
obs obs

ij
exp exp

= − = −a r r b r r,i j i jij
obs obs

ij
exp exp

where sgn(x)= x/|x| (sign function). A high value of Γ, regardless of
the specific selection of aij and bij, indicates a high level of agreement
between the ranked observed accident counts and the ones predicted by
a model. This is a clear sign of a good model fit.

Finally, Moran's I (Moran, 1950a,b) consists in a global estimation
of the spatial autocorrelation of a variable indexed in according to a
system of spatial units. Its definition is the following:

=
∑ ∑ − −

∑ −
= ∈

=
I

x x x x

x x

( ¯)( ¯)

( ¯)
i
n

j N i n i j

i
n

i

1 ( )
1

1
2

idir

where xi is a variable indexed by spatial unit and x̄ its average. Thus,
Moran's I makes use of the predefined neighbourhood structure and
behaves as a correlation between the variable of interest and a variable
that assigns to each of the spatial units a weighted average of the values
of its neighbours. Under the hypothesis of no spatial autocorrelation, it
holds that E(I)=−1/(n− 1), where n is the number of spatial units
(975). Hence, negative Moran's I values for the residuals of the model
would be an indicator of a good performance from the fitted Bayesian
count models in capturing the spatial effect.

3.7. Kernel Density Estimation

Kernel Density Estimation (KDE) is commonly used to obtain the
intensity of a point pattern that lies on a space. Particularly, it can be
used to estimate the intensity of a point pattern along a linear network,
requiring modifications of the classical formulas (valid for areal units)
to account for the particularities of this spatial structure (Okabe et al.,
2009; Okabe and Sugihara, 2012). In this study, the equal-split con-
tinuous kernel density defined by McSwiggan et al. (2017) is computed
at the middle point of every road segment i of the linear network fol-
lowing the next equation, by which the fσ(i) values are obtained:

∑=
∈

f i k d x m a π( ) ( ( , )) ( )σ
x A m σ

L i
C

( , )i (3)

where mi is the middle point of the road segment i of the linear network,
σ is the kernel's bandwidth, A(mi, σ) is the set of points of the network at
a distance from mi up to σ where an accident took place,

= −k u e( ) σ π
1 ( )u

σ
2
is the kernel function (Gaussian), dL is the distance

along the network and = ∏ =a π( )C
j
m

v1
2

deg( )j
, where =π v v[ , ..., ]m1 de-

notes the set of vertices of the network that have to be passed through
to travel the shortest path that joins mi with x and deg() represents the
degree of a vertex of the network, meaning the number of road seg-
ments incident to the vertex. It needs to be remarked that the compu-
tation of the distance dL between any two points of the network makes
use of its directed structure, providing a realistic measure of the dis-
tance between the two points according to traffic flow.

A Gaussian kernel was selected because it is the most common op-
tion, and no other kernel functions were explored because this choice
usually has little effect on the results (Silverman, 2018). On the choice
of the bandwidth parameter, a value of around σ=50 m would be
optimal if the non-parametric test proposed by Cronie and Van Lieshout
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(2018) were followed. However, the larger value of σ=100 m was
applied in agreement with previous studies on road networks that have
employed KDE for hotspot detection (Xie and Yan, 2013; Nie et al.,
2015).

Finally, edge effects (Okabe and Sugihara, 2012) need to be dis-
cussed because the network used for the analysis is to a certain extent
artificially bounded, being only a part of the larger road network of
Valencia. First, it needs to be remarked that the kernel construction
chosen (Equation (3)) alleviates edge effects, as stated by McSwiggan
et al. (2017). Second, Eixample District is delimited by pedestrian and
secondary roads (to the north and south), a train station (to the west)
and a green area (to the east), which to some extent make the district
naturally bounded (Fig. 1a enables us to appreciate some of these
points). Furthermore, the two roads bordering the network of analysis
to the north and south are important avenues of Valencia which ac-
count for most of the accidents in the vicinity (these avenues are part of
the network analyzed). All these facts allow us to conclude that acci-
dent densities estimated along the four roads that form the border of the
network are reasonable.

3.8. Coldspot/hotspot detection

The use of the count models was supplemented with a search for
zones of the network with a particularly low or high incidence of traffic
accidents; these are usually known as coldspots and hotspots, respec-
tively. Several approaches to this problem coexist in recent literature on
traffic accident data, including some of the studies already mentioned
in the Introduction (Xie and Yan, 2013; Nie et al., 2015; Thakali et al.,
2015; Harirforoush and Bellalite, 2016). These methods mainly agree in
the use of KDE to obtain a smooth representation of the observed point
pattern, a process which is commonly followed by the detection of
zones of the network whose KDE values present a significant spatial
autocorrelation.

Here, KDE was computed with σ=100 m at the middle point of
each road segment of the network considering the dL distance along the
network that accounts for traffic flow (following Equation (3)). Then,
the local version of Moran's I statistic known as LISA (Anselin, 1995)
was obtained for each road segment following the next formula:

∑= −
∑ −

−I x x
x x n

w x x¯
( ¯) /

( ¯)i
i

i i j
j2 ij

The road segments showing a significant local association (a
threshold of 0.1 was used for the p-value instead of the usual 0.05 to
minimally extend some of the coldspots/hotspots, allowing a wider part
of the network to be analyzed) were selected and grouped according to
their contiguity. Other inputs such as the accident count per road seg-
ment or the accident rates were also considered for computing the LISA
values, but KDE was the only one capable of providing a sensible
number of zones along the network presenting similar behaviour in
terms of dangerousness. Finally, the basic average intensity of the point

pattern (number of events per unit length) in each of the zones of in-
terest was compared with the mean intensity in its first-order neigh-
bourhood (the set of all the first-order neighbours of the road segments
composing the zone), which made it possible to detect both low-in-
tensity (coldspot) and high-intensity (hotspot) parts of the network
showing a differential incidence of traffic accidents in comparison with
the road segments in their surrounding areas.

Finally, once the coldspots and hotspots had been located in the
network, the values of the covariates of the road segments that formed
them were individually analyzed to confirm or put into question the
conclusions that could be drawn from the use of the count models.

4. Results and discussion

A total of four Monte Carlo Markov chains (MCMC) of length 30000
were run for the two models starting from non-informative priors for
the parameters involved. The length of the chains was chosen to be
large enough to ensure the convergence of the estimates of all the
parameters involved in the models, which was afterwards checked
using common validation tools (scale reduction factor close to 1 for all
estimates and visual inspection of the chains). The choice of a ZINB
model is sensible according to the values in Table 3, which was vali-
dated through subsequent predictive checks of a graphical nature. First,
accident counts are clearly overdispersed with a variance-to-mean ratio
of 31.22 for the original network. Second, 23.2% of the road segments
(103 of the 444 road segments that form the original network) have no
accidents recorded for the period being considered, which leads to the
choice of a zero-inflated response. Furthermore, the inequality observed
in the accident counts per road segment leads to a Gini index (Gini,
1912) of 0.67, with more than the 50% of the accidents recorded
concentrated in 52 of the segments of the original network (these seg-
ments represent only 15% of the length of the network), in agreement
with previous studies of a similar nature (although not focused on
traffic accidents) referring to the law of crime concentration (Weisburd,
2015). These particularities of the data of study are also present when
the network is split into IAZs and MAZs. However, whereas the var-
iance-to-mean ratio is not so heavily affected, the number of zeros is
much higher in IAZs. For this reason, the estimation of the zero-inflated
probability was made dependent on the zone, as described in the pre-
vious methodological section regarding count model specifications.

Table 4 displays the values obtained for the three kinds of validation
tools that were applied. Moran's I values were negative for both models,
which is a sign of good performance as it indicates the absence of
spatial autocorrelation between model residuals. Correlation coeffi-
cients (Γ) derived from the comparison of observed and expected counts
at the road segment were very similar and significantly greater than 0
for both models, although a slight improvement can be appreciated for
Model 1. Regarding the percentage of potential outliers according to the
CPO method (IAZs and MAZs showing a p-value lower than 0.05 ac-
cording to Equation (2)), the results are again very close, but better
again for Model 1. In conclusion, Model 1 presents better results than
Model 2 by a narrow margin, but both models offer a reasonable basis
to allow conclusions to be drawn from them regarding the occurrence of
traffic accidents in the network of analysis.

Therefore, let us now concentrate on model parameters and on the
effects that the covariates being considered could have had on the

Table 3
Summary of the response (counts at the road segment level) for the original and
the split road network.

Original network Split network

IAZs MAZs

Mean 12.92 5.75 6.21
Variance 403.46 189.94 123.25
Variance/Mean 31.22 33.06 19.84
% Zeros 23.20 49.19 18.84
Gini Index 0.67 0.80 0.66
No. of accidents 5738 3924 1814
No. of segments 444 683 292
Road length (m) 33571.09 14166.96 19404.13

Table 4
Values obtained for the statistical tools employed for model comparison.

Model 1 Model 2

Γ (Kendall) 0.37 0.34
Γ (Spearman) 0.47 0.43
% Potential outliers 13.85 15.28
Moran's I −0.06 −0.04
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accidents that occurred in the network of study during the period
2005–2017. Table 5 shows the results for Model 1 and Model 2, in
which the missing levels of any covariate are implicitly present as they
are considered the reference levels for the covariate (the other levels are
estimated in relation to the missing one). If the estimation for the
coefficient corresponding to a covariate (β's and γ's) or a structural
parameter (ψ, z and α) lies in the 90% credible interval (all derived from
the MCMC procedure), then the effect of that covariate or structural
parameter is significant with 90% credibility. All structural parameters
were found to be significant in all models. Hence, a modelling approach
that includes spatial heterogeneity (α > 0), overdispersion (ψ > 0)
and a zero-inflated distribution that depends on the zone (MAZ or IAZ)
is justified. Parameters ψ and z driving the ZINB distribution present

very similar estimates for the two models. The higher percentage of
zeros in IAZs is clear from the estimates obtained for the slope para-
meter (zSlope > 8), which models z through a logit equation. This
particularly means (for instance, for Model 1) that

= ≃− +
+ − +z 0.41exp( 8.69 8.32)

1 exp( 8.69 8.32) in IAZs (following Equation (1)), a value that
is not surprising in view of Table 3. On the other hand,

= <−
+ −

−z 2·10exp( 8.69)
1 exp( 8.69)

4 indicates that zero-inflation is not needed for
modelling accident counts in MAZs, that is, a non-modified NB dis-
tribution would be suitable enough.

With regard to covariate effects, Model 1 indicates that main roads,
roads containing a bus lane and approaching-intersection segments
(IAZs) are associated with a higher accident count. In contrast, the
existence of parking slots in the road and geometries of type 3 and 4
correlate with fewer traffic accidents at the road segment level for the
network of study. Regarding these two geometry types, as mentioned
previously, they mainly include short and sharp road segments (Cluster
3) and short-medium segments that are highly connected with the latter
(Cluster 4). The sign of the coefficient related to Cluster 3 may be
considered inconsistent with literature reporting higher crash risks for
skewed road intersections (Harwood et al., 2000; Nightingale et al.,
2017; Kumfer et al., 2019), which is supported by the fact that skewed
intersections cause longer traverse times than 90-degree intersections
and poor visibility for drivers, among other things (Gattis and Low,
1998). However, it is worth noting that most of the research regarding
skewed intersections is based on high-speed rural intersections. The
Eixample network analyzed in this study represents a low-to-moderate-
speed urban area. No significant associations are found for the rest of
the covariates, including the multilevel categorical ones representing
the number of lanes in the road, the number of entrances/exits and the
AADT level.

On the other hand, Model 2 provides a more complex depiction of
the effect of the covariates being studied, as it considers a differential
effect for each of them depending on the zone type (IAZ or MAZ).
Among the β parameters, which now represent effects within MAZs,
only the one representing the effect of Cluster 3 remains significant
(with the same sign as in Model 1). Despite not being significant with
90% credibility, the effects of main roads and the presence of a bus lane
should not be completely overlooked according to the confidence in-
tervals obtained. In addition, Model 2 points out the different con-
tribution that some factors may make to the risk of traffic accidents in
IAZs or MAZs. Road geometry reflected by Cluster 4 now appears as
significant only for IAZs, presenting a even more negative coefficient
than in the case of Model 1. Moreover, the association of the two
highest levels of AADT, 4 and 5, with traffic accidents presents a dif-
ferential behaviour between MAZs and IAZs. Indeed, both β parameters
are significant and positive, suggesting an increase in the number of
traffic accidents in MAZs, but the two corresponding γ parameters are
negative, indicating a protective effect (or, at least, a less detrimental
effect) against traffic accidents in the most travelled road segments
when a road intersection is near. Therefore, the distinction between
IAZs and MAZs has allowed us to find a significant association between
some AADT levels and traffic accidents that depends on the proximity
to road intersections, a result that somehow compensates the surprising
(according to previous research) non-significant estimates found for the
AADT levels in Model 1.

The computation of network-constrained KDE values with σ=100
m leads to the smooth representation of traffic accidents shown in
Fig. 6a. This Figure shows that one of the main avenues located in the
network (which also has the highest values for AADT) has a very high
accident rate along all its length. Similarly, avenues and main roads
bordering the network contain some zones of high accident rates. In
contrast, the central part of the network shows much lower values than
neighbouring locations. Therefore, the KDE values computed at the
middle points of the 975 segments forming the split network were used
to find (through LISA values) coldspots and hotspots accurately located

Table 5
Summary of the results obtained with Models 1 and 2. Coefficient estimates (β
and γ) in bold represent covariates significant with 90% credibility, whereas Lo
and Up denote the lower and upper bounds (respectively) of the 90% credible
intervals for such estimates.

Model 1 Model 2
Covariate β Lo Up β Lo Up

(Intercept) -3.01 −3.42 −2.60 -3.43 −3.99 −2.88
Main road 0.41 0.04 0.78 0.50 −0.09 1.09
Parking slots -0.27 −0.51 −0.02 −0.14 −0.49 0.20
Traffic light −0.08 −0.30 0.14 −0.20 −0.68 0.28
Bus stops 0.02 −0.25 0.30 0.21 −0.19 0.60
Bus lane 0.36 0.04 0.68 0.39 −0.09 0.88
No. of lanes (2) −0.29 −0.64 0.05 0.01 −0.50 0.53
No. of lanes (3) 0.20 −0.23 0.65 0.00 −0.67 0.68
No. of lanes (4) 0.36 −0.22 0.94 −0.06 −1.02 0.89
No. of lanes (≥ 5) −0.04 −0.64 0.56 0.01 −0.87 0.90
No. of in-neighbours (2) 0.05 −0.16 0.27 0.03 −0.31 0.36
No. of in-neighbours (≥ 3) 0.05 −0.38 0.48 −0.07 −0.70 0.56
No. of out-neighbours (2) 0.04 −0.19 0.26 0.03 −0.31 0.37
No. of out-neighbours (≥

3)
0.29 −0.15 0.73 −0.04 −0.71 0.63

Cluster (2) 0.06 −0.23 0.35 0.04 −0.35 0.44
Cluster (3) -0.43 −0.81 −0.06 -1.24 −2.25 −0.25
Cluster (4) -0.59 −0.91 −0.28 0.05 −0.41 0.49
AADT (2) 0.10 −0.32 0.51 0.11 −0.52 0.74
AADT (3) −0.15 −0.58 0.29 −0.26 −0.94 0.42
AADT (4) 0.28 −0.31 0.88 1.22 0.32 2.13
AADT (5) 0.48 −0.10 1.06 1.34 0.36 2.34
IAZ 1.58 1.35 1.79 2.43 1.67 3.18

Covariate∣IAZ γ Lo Up γ Lo Up

Main road∣IAZ - - - −0.27 −1.01 0.46
Parking slots∣IAZ - - - −0.22 −0.68 0.25
Traffic light∣IAZ - - - 0.07 −0.47 0.61
Bus stops∣IAZ - - - −0.30 −0.83 0.23
Bus lane∣IAZ - - - −0.04 −0.66 0.58
No. of lanes (2)∣IAZ - - - −0.33 −1.01 0.34
No. of lanes (3)∣IAZ - - - 0.42 −0.43 1.28
No. of lanes (4)∣IAZ - - - 1.05 −0.12 2.24
No. of lanes (≥ 5)∣IAZ - - - −0.07 −1.21 1.08
No. of in-neighbours (2)∣IAZ - - - 0.09 −0.33 0.51
No. of in-neighbours (≥ 3)∣IAZ - - - 0.19 −0.64 1.01
No. of out-neighbours (2)∣IAZ - - - 0.01 −0.42 0.44
No. of out-neighbours (≥ 3)∣IAZ - - - 0.70 −0.16 1.57
Cluster (2)∣IAZ - - - 0.00 −0.54 0.55
Cluster (3)∣IAZ - - - 0.68 −0.40 1.79
Cluster (4)∣IAZ - - - -1.19 −1.79 −0.59
AADT (2)∣IAZ - - - 0.03 −0.76 0.82
AADT (3)∣IAZ - - - 0.04 −0.81 0.89
AADT (4)∣IAZ - - - -1.76 −2.91 −0.61
AADT (5)∣IAZ - - - -1.55 −2.76 −0.36

Parameter Est. Lo Up Est. Lo Up

ψ 1.71 1.06 2.65 1.56 1.07 2.33
zIntercept -8.69 −15.87 −4.68 -8.61 −15.63 −4.63
zSlope 8.32 4.30 15.49 8.27 4.28 15.30
α 0.11 0.01 0.32 0.17 0.01 0.47
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in the network, which are displayed in Fig. 6b. Identifying coldspots
and hotspots enables us to compare the values presented by the cov-
ariates in the road segments forming them, but also in the rest of the
network. Table 6 contains the mean values (weighted by each road
segment's length) of the covariates at coldspots, hotspots and average
road segments (neither a coldspot nor a hotspot), which enables us to
check the high relative frequency of main roads, bus lanes, 4 or more
lanes, 3 or more in- and out-neighbours and levels 4 and 5 of AADT in
the road segments belonging to hotspots in comparison to those in
coldspots or in average microzones. On the latter, it must be re-
membered that many of these covariates or levels were not yielded as a
significant factor by the count models. Finally, the geometries of type 3
(for IAZs), 2 and 4 (for MAZs) are particularly high in hotspots, which
may be unexpected according to the results shown by the two models
fitted. In this regard, it is worth remarking that one should not expect

road characteristics particularly represented in hotspots/coldspots to
display a significant association with traffic accidents from a global
modelling perspective. Hence, the combination of two statistical
methodologies can either strengthen the validity of the conclusions or
call them into question.

5. Conclusions

Traffic safety analyses set over areal spatial units have been of in-
terest for many years, but the recent development of statistical tech-
niques on linear networks is bringing new advances and challenges for
this subject. Specifically, in this study, a linear network has been used
to analyze a geocoded dataset of accidents that took place in the city of
Valencia (Spain) during the period 2005–2017. In this regard, the
proper consideration of road intersections and the combination of

Fig. 6. Quintile distribution of the KDE values for σ=100 m (a) and coldspots (green) and hotspots (red) detected after the computation of LISA statistics from these
KDE values for the split network made of 20 m IAZ. In (a), each road segment of the split linear network is coloured according to the KDE value at its middle point.

Table 6
Relative frequencies of the covariates in the road segments that form the coldspots, average zones and hotspots detected. Each frequency is obtained by averaging the
values of the covariates for all the road segments in each set, but weighting them according to their corresponding lengths. For the binary variables only the
frequencies of presence at the road segment (value of 1) are shown.

Covariate Coldspots Average Hotspots

IAZ MAZ IAZ MAZ IAZ MAZ

Main road (1) 0.33 0.00 0.53 0.47 0.94 0.94
Parking slots (1) 0.63 0.65 0.65 0.77 0.23 0.34
Traffic light (1) 0.25 0.00 0.52 0.07 0.63 0.29
Bus stops (1) 0.08 0.00 0.14 0.20 0.13 0.15
Bus lane (1) 0.33 0.00 0.52 0.50 0.82 0.98
No. of lanes (1) 0.71 1.00 0.56 0.59 0.17 0.07
No. of lanes (2) 0.25 0.00 0.21 0.21 0.09 0.11
No. of lanes (3) 0.04 0.00 0.13 0.12 0.12 0.23
No. of lanes (4) 0.00 0.00 0.07 0.04 0.40 0.21
No. of lanes (≥ 5) 0.00 0.00 0.04 0.04 0.21 0.38
No. of in-neighbours (1) 0.28 0.26 0.26 0.24 0.46 0.34
No. of in-neighbours (2) 0.61 0.74 0.63 0.63 0.36 0.37
No. of in-neighbours (≥ 3) 0.08 0.00 0.11 0.14 0.18 0.30
No. of out-neighbours (1) 0.16 0.39 0.27 0.21 0.42 0.33
No. of out-neighbours (2) 0.84 0.61 0.63 0.67 0.37 0.34
No. of out-neighbours (≥ 3) 0.00 0.00 0.10 0.12 0.21 0.33
Cluster (1) 0.12 0.00 0.13 0.31 0.04 0.00
Cluster (2) 0.20 0.39 0.40 0.51 0.22 0.62
Cluster (3) 0.09 0.00 0.20 0.02 0.49 0.00
Cluster (4) 0.59 0.61 0.28 0.16 0.25 0.37
AADT (1) 0.71 1.00 0.60 0.67 0.11 0.06
AADT (2) 0.04 0.00 0.13 0.13 0.12 0.11
AADT (3) 0.25 0.00 0.12 0.08 0.09 0.13
AADT (4) 0.00 0.00 0.07 0.08 0.13 0.40
AADT (5) 0.00 0.00 0.07 0.04 0.55 0.30
Total road length (m) 506.87 144.95 10969.22 17626.74 2682.96 1632.44
No. of road segments 25 3 538 256 120 33
No. of accidents 7 1 1989 1066 1928 747
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several statistical techniques have been emphasized.
Indeed, the study of traffic accidents around road intersections is of

special interest given the high percentage of them that occur close to
these road entities. Typically, these analyses are done independently of
the values observed for road segments between intersections. This
strategy can potentially lead us to miss important relationships (mainly
of a spatial type) between intersections and segments in between which
may detract from the validity of the results. In this article, the definition
of IAZs and MAZs along the directed linear network available has
provided a unified approach (involving spatial relationships and the
definition of covariates) to this issue that does not exclude any type of
road entity.

On the other hand, from a modelling perspective, the coexistence of
multiple methodologies to treat accidents datasets provides a flexible
framework for analyzing many kinds of specific questions of interest,
but this fact also leads to great difficulties when trying to decide on a
particular approach. In this study, overdispersion of accident counts
and the disparate effects that arise at road segments near intersections,
producing both a high concentration of traffic accidents and a high
presence of zeros, were addressed through a zero-inflated negative bi-
nomial distribution. In addition, spatial relationships between road
segments were included with a CAR distribution based on a neigh-
bourhood matrix that accounted for traffic flow. Later, model quality
was assessed employing several validation tools, including checks based
on simulated data that led to outlier detection, but also more classical
techniques such as correlation coefficients and Moran's I.

Furthermore, this study has combined the use of spatial count
models with the detection of coldspots and hotspots. The results derived
from each of the approaches have been discussed and compared, pro-
viding coherent results even though some differences were noted. This
kind of local analysis could be very useful for validating the results from
the statistical models and and questioning some of the conclusions
yielded by the former, increasing the robustness of the final results. In
this regard, the nature of KDE alleviates the existence of geocoding
inaccuracies that may arise when conducting a spatial analysis of this
kind, especially when it is done at the road segment level. Indeed, the
risk of making mistakes as a consequence of bad geocoding are higher
for the construction of the response variable representing accident
counts at the road segment level. Here, a small inaccuracy can lead to
situating a traffic accident in the wrong road segment, altering the
counts of two segments. Kernel density estimation, however, produces a
smooth representation of the intensity of traffic accidents along the
network that can even absorb some of the geocoding inaccuracies that
usually occur, as suggested by Harada and Shimada (2006) and
Zandbergen (2009).

Overall, the modelling approach revealed that spatial heterogeneity,
overdispersion and the effect of road intersections on adjacent road
segments (including zero-inflation) must be accounted by analyzing the
distribution of accident counts in the Eixample District of Valencia. The
generalization of these findings to other urban areas may be risky,
because this kind of analysis is always data-dependent, but it should
always be reasonable to consider it. In addition, the detection of hot-
spots and coldspots identified the fact that main roads, the existence of
a bus lane in the road, 4 or more lanes and high AADT values are as-
sociated with higher accident counts at the road segment level. The
effect of other covariates remained unclear or non-significant and may
require further analysis. In any case, this study was slightly limited in
terms of covariates, which should be addressed in the future with the
availability of more complete and accurate geographic information
systems.

Funding

This research did not receive any specific grant from funding
agencies in the public, commercial, or not-for-profit sectors.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgements

We thank José Serrano, Chief of Valencia Local Police Department,
the Unitat d’Atestats i Seguretat en el Transport and the Statistics Office of
Valencia for providing the data used in the study.

References

Aguero-Valverde, J., Jovanis, P., 2008. Analysis of road crash frequency with spatial
models. Transport. Res. Rec.: J. Transport. Res. Board (2061), 55–63.

Alarifi, S.A., Abdel-Aty, M., Lee, J., 2018. A Bayesian multivariate hierarchical spatial
joint model for predicting crash counts by crash type at intersections and segments
along corridors. Acc. Anal. Prevent. 119, 263–273.

Anastasopoulos, P.C., 2016. Random parameters multivariate tobit and zero-inflated
count data models: Addressing unobserved and zero-state heterogeneity in accident
injury-severity rate and frequency analysis. Anal. Methods Acc. Res. 11, 17–32.

Anselin, L., 1995. Local indicators of spatial association-LISA. Geogr. Anal. 27 (2),
93–115.

Baddeley, A., Rubak, E., Turner, R., 2015. Spatial point patterns: methodology and ap-
plications with R. CRC Press.

Banerjee, S., Carlin, B.P., Gelfand, A.E., 2004. Hierarchical modeling and analysis for
spatial data. Chapman and Hall/CRC.

Barua, S., El-Basyouny, K., Islam, M.T., 2016. Multivariate random parameters collision
count data models with spatial heterogeneity. Anal. Methods Acc. Res. 9, 1–15.

Besag, J., 1974. Spatial interaction and the statistical analysis of lattice systems. J. Roy.
Stat. Soc. Ser B 192–236.

Besag, J., York, J., Mollié, A., 1991. Bayesian image restoration, with two applications in
spatial statistics. Ann. Inst. Stat. Math. 43 (1), 1–20.

Bivand, R., Piras, G., 2015. Comparing Implementations of Estimation Methods for
Spatial Econometrics. J. Stat. Softw. 63 (18), 1–36.

Briz-Redón, Á., 2019. SpNetPrep: An R package using Shiny to facilitate spatial statistics
on road networks. Res. Ideas Outcomes 5, e33521.

Bürkner, P.-C., et al., 2017. brms: An R package for Bayesian multilevel models using
Stan. J. Stat. Softw. 80 (1), 1–28.

Cai, Q., Abdel-Aty, M., Lee, J., Wang, L., Wang, X., 2018. Developing a grouped random
parameters multivariate spatial model to explore zonal effects for segment and in-
tersection crash modeling. Anal. Methods Acc. Res. 19, 1–15.

Carpenter, B., Gelman, A., Hoffman, M.D., Lee, D., Goodrich, B., Betancourt, M.,
Brubaker, M., Guo, J., Li, P., Riddell, A., 2017. Stan: A probabilistic programming
language. J. Stat. Softw. 76 (1).

Castro, M., Paleti, R., Bhat, C.R., 2012. A latent variable representation of count data
models to accommodate spatial and temporal dependence: Application to predicting
crash frequency at intersections. Transport. Res. B Methodol. 46 (1), 253–272.

Cronie, O., Van Lieshout, M.N.M., 2018. A non-model-based approach to bandwidth se-
lection for kernel estimators of spatial intensity functions. Biometrika 105 (2),
455–462.

Das, A., Pande, A., Abdel-Aty, M., Santos, J., 2008. Characteristics of urban arterial
crashes relative to proximity to intersections and injury severity. Transport. Res. Rec.
J. Tranport. Res. Board (2083), 137–144.

Fan, W., Kane, M.R., Haile, E., 2015. Analyzing severity of vehicle crashes at highway-rail
grade crossings: multinomial logit modeling. J. Transport. Res. Forum 54, 39–56.

Gabry, J., Mahr, T., 2018. bayesplot: Plotting for Bayesian Models. R package version
1.6.0.

Gattis, J., Low, S.T., 1998. Intersection angle geometry and the driver's field of view.
Transport. Res. Rec. 1612 (1), 10–16.

Gelman, A., Stern, H.S., Carlin, J.B., Dunson, D.B., Vehtari, A., Rubin, D.B., 2013.
Bayesian data analysis. Chapman and Hall/CRC.

Gini, C., 1912. Variabilità e mutabilità. Reprinted in Memorie di metodologica statistica
(Ed. Pizetti E, Salvemini, T). Libreria Eredi Virgilio Veschi, Rome (1912).

Graul, C., 2016. leafletR: Interactive Web-Maps Based on the Leaflet JavaScript Library. R
package version 0.4-0.

Guo, Q., Xu, P., Pei, X., Wong, S., Yao, D., 2017. The effect of road network patterns on
pedestrian safety: A zone-based Bayesian spatial modeling approach. Acc. Anal.
Prevent. 99, 114–124.

Hao, W., Daniel, J., 2014. Motor vehicle driver injury severity study under various traffic
control at highway-rail grade crossings in the united states. J. Saf. Res. 51, 41–48.

Harada, Y., Shimada, T., 2006. Examining the impact of the precision of address geo-
coding on estimated density of crime locations. Comput. Geosci. 32 (8), 1096–1107.

Harirforoush, H., Bellalite, L., 2016. A new integrated GIS-based analysis to detect hot-
spots: a case study of the city of Sherbrooke. Accident Analysis & Prevention.

Hartigan, J.A., Wong, M.A., 1979. Algorithm as 136: A k-means clustering algorithm. J.
Roy. Stat. Soc. Ser C (Appl. Stat.) 28 (1), 100–108.

Harwood, D.W., Council, F., Hauer, E., Hughes, W., Vogt, A., 2000. Prediction of the
expected safety performance of rural two-lane highways. Federal Highway
Administration, United States Technical report.

Huang, H., Abdel-Aty, M., Darwiche, A., 2010. County-level crash risk analysis in Florida:
Bayesian spatial modeling. Transport. Res. Rec. J. Tranport. Res. Board (2148),
27–37.

Á. Briz-Redón, et al. Accident Analysis and Prevention 132 (2019) 105252

11

http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0005
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0005
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0010
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0010
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0010
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0015
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0015
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0015
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0020
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0020
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0025
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0025
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0030
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0030
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0035
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0035
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0040
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0040
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0045
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0045
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0050
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0050
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0055
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0055
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0060
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0060
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0065
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0065
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0065
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0070
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0070
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0070
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0075
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0075
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0075
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0080
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0080
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0080
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0085
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0085
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0085
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0090
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0090
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0095
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0095
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0100
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0100
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0105
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0105
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0110
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0110
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0115
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0115
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0120
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0120
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0120
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0125
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0125
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0130
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0130
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0135
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0135
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0140
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0140
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0145
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0145
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0145
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0150
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0150
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0150


Huang, H., Song, B., Xu, P., Zeng, Q., Lee, J., Abdel-Aty, M., 2016. Macro and micro
models for zonal crash prediction with application in hot zones identification. J.
Transport. Geogr. 54, 248–256.

Huang, H., Zhou, H., Wang, J., Chang, F., Ma, M., 2017. A multivariate spatial model of
crash frequency by transportation modes for urban intersections. Anal. Methods Acc.
Res. 14, 10–21.

Kahle, D., Wickham, H., 2013. ggmap: Spatial visualization with ggplot2. R J. 5 (1),
144–161.

Kendall, M.G., 1938. A new measure of rank correlation. Biometrika 30 (1/2), 81–93.
Kumfer, W., Harkey, D., Lan, B., Srinivasan, R., Carter, D., Patel Nujjetty, A., Eigen, A.M.,

Tan, C., 2019. Identification of Critical Intersection Angle through Crash
Modification Functions. Transport. Res. Rec page 0361198119828682.

Lee, J., Abdel-Aty, M., Cai, Q., 2017. Intersection crash prediction modeling with macro-
level data from various geographic units. Acc. Anal. Prevent. 102, 213–226.

Mannering, F.L., Bhat, C.R., 2014. Analytic methods in accident research: Methodological
frontier and future directions. Anal. Methods Acc. Res. 1, 1–22.

Mannering, F.L., Shankar, V., Bhat, C.R., 2016. Unobserved heterogeneity and the sta-
tistical analysis of highway accident data. Anal. Methods Acc. Res. 11, 1–16.

Marshall, E., Spiegelhalter, D., 2003. Approximate cross-validatory predictive checks in
disease mapping models. Stat. Med. 22 (10), 1649–1660.

McSwiggan, G., Baddeley, A., Nair, G., 2017. Kernel density estimation on a linear net-
work. Scand. J. Stat. 44 (2), 324–345.

Miaou, S.-P., Lord, D., 2003. Modeling traffic crash-flow relationships for intersections:
dispersion parameter, functional form, and Bayes versus empirical Bayes methods.
Transport. Res. Rec. J. Tranport. Res. Board (1840), 31–40.

Moran, P.A., 1950a. Notes on continuous stochastic phenomena. Biometrika 37 (1/2),
17–23.

Moran, P.A., 1950b. A test for the serial independence of residuals. Biometrika 37 (1/2),
178–181.

Nie, K., Wang, Z., Du, Q., Ren, F., Tian, Q., 2015. A network-constrained integrated
method for detecting spatial cluster and risk location of traffic crash: A case study
from Wuhan, China. Sustainability 7 (3), 2662–2677.

Nightingale, E., Parvin, N., Seiberlich, C., Savolainen, P.T., Pawlovich, M., 2017.
Investigation of Skew Angle and Other Factors Influencing Crash Frequency at High-
Speed Rural Intersections. Transport. Res. Rec. 2636 (1), 9–14.

Okabe, A., Satoh, T., Sugihara, K., 2009. A kernel density estimation method for net-
works, its computational method and a GIS-based tool. Int. J. Geogr. Inform. Sci. 23
(1), 7–32.

Okabe, A., Sugihara, K., 2012. Spatial analysis along networks: statistical and computa-
tional methods. John Wiley & Sons.

OpenStreetMap contributors, 2017. Planet dump. retrieved from https://planet.osm.org.
https://www.openstreetmap.org.

Papadimitriou, E., Filtness, A., Theofilatos, A., Ziakopoulos, A., Quigley, C., Yannis, G.,

2019. Review and ranking of crash risk factors related to the road infrastructure. Acc.
Anal. Prevent. 125, 85–97.

Pearson, K., 1896. Mathematical contributions to the theory of evolution. III. Regression,
heredity, and panmixia. Philos. Trans. Roy. Soc. London Ser A 187, 253–318.

Quddus, M.A., 2008. Modelling area-wide count outcomes with spatial correlation and
heterogeneity: an analysis of London crash data. Acc. Anal. Prevent. 40 (4),
1486–1497.

R Core Team, 2017. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria.

Silverman, B.W., 2018. Density estimation for statistics and data analysis. Routledge.
Spearman, C., 1904. The proof and measurement of association between two things. Am.

J. Psychol. 15 (1), 72–101.
Stern, H.S., Cressie, N., 2000. Posterior predictive model checks for disease mapping

models. Stat. Med. 19 (17-18), 2377–2397.
Thakali, L., Kwon, T.J., Fu, L., 2015. Identification of crash hotspots using kernel density

estimation and kriging methods: a comparison. J. Modern Tranport. 23 (2), 93–106.
Weisburd, D., 2015. The law of crime concentration and the criminology of place.

Criminology 53 (2), 133–157.
Xie, K., Wang, X., Ozbay, K., Yang, H., 2014. Crash frequency modeling for signalized

intersections in a high-density urban road network. Anal. Methods Acc. Res. 2, 39–51.
Xie, Z., Yan, J., 2008. Kernel density estimation of traffic accidents in a network space.

Comput. Environ. Urban Syst. 32 (5), 396–406.
Xie, Z., Yan, J., 2013. Detecting traffic accident clusters with network kernel density

estimation and local spatial statistics: an integrated approach. J. Transport. Geogr.
31, 64–71.

Xu, P., Huang, H., Dong, N., Wong, S., 2017. Revisiting crash spatial heterogeneity: a
Bayesian spatially varying coefficients approach. Acc. Anal. Prevent. 98, 330–337.

Yang, H., Ozbay, K., Ozturk, O., Yildirimoglu, M., 2013. Modeling work zone crash fre-
quency by quantifying measurement errors in work zone length. Acc. Anal. Prevent.
55, 192–201.

Yasmin, S., Eluru, N., Lee, J., Abdel-Aty, M., 2016. Ordered fractional split approach for
aggregate injury severity modeling. Transport. Res. Rec. 2583 (1), 119–126.

Ye, X., Pendyala, R.M., Washington, S.P., Konduri, K., Oh, J., 2009. A simultaneous
equations model of crash frequency by collision type for rural intersections. Saf. Sci.
47 (3), 443–452.

Zandbergen, P.A., 2009. Geocoding quality and implications for spatial analysis. Geogr.
Compass 3 (2), 647–680.

Zeng, Q., Wen, H., Huang, H., Abdel-Aty, M., 2017. A Bayesian spatial random parameters
Tobit model for analyzing crash rates on roadway segments. Acc. Anal. Prevent. 100,
37–43.

Zhao, M., Liu, C., Li, W., Sharma, A., 2018. Multivariate Poisson-lognormal model for
analysis of crashes on urban signalized intersections approach. J. Tranport. Saf.
Security 10 (3), 251–265.

Á. Briz-Redón, et al. Accident Analysis and Prevention 132 (2019) 105252

12

http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0155
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0155
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0155
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0160
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0160
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0160
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0165
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0165
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0170
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0175
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0175
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0175
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0180
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0180
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0185
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0185
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0190
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0190
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0195
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0195
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0200
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0200
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0205
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0205
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0205
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0210
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0210
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0215
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0215
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0220
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0220
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0220
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0225
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0225
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0225
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0230
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0230
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0230
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0235
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0235
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0240
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0240
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0245
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0245
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0245
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0250
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0250
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0255
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0255
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0255
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0260
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0260
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0265
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0270
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0270
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0275
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0275
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0280
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0280
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0285
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0285
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0290
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0290
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0295
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0295
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0300
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0300
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0300
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0305
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0305
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0310
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0310
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0310
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0315
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0315
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0320
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0320
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0320
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0325
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0325
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0330
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0330
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0330
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0335
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0335
http://refhub.elsevier.com/S0001-4575(19)30609-8/sbref0335

	Spatial analysis of traffic accidents near and between road intersections in a directed linear network
	Introduction
	Review of models and methods
	Traffic safety at road intersections

	Data
	Accident information
	Network structure
	Network-related covariates

	Methodology
	Software
	Definition of intersection zones
	Concept of neighbourhoods
	Road segment neighbourhood geometry
	Accident count modelling
	Model checks
	Kernel Density Estimation
	Coldspot/hotspot detection

	Results and discussion
	Conclusions
	Funding
	Conflicts of Interest
	Acknowledgements
	References




