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A B S T R A C T

Maintaining taxi safety is one of the important goals of operating urban transportation systems. Taxicabs are
often prone to higher crash risk due to their long-time exposure to the complicated and dynamic traffic en-
vironments in urban areas. Despite existing efforts in understanding the safety issues associated with these
vehicles, there were still few attempts that have specifically examined the relationship between taxi-involved
crashes and other multifaceted contributing factors. To this end, this paper aims to develop crash frequency
models for analyzing taxi-involved crashes. In particular, the spatial autocorrelations between variables were
explored and the Poisson conditional autoregressive (Poisson-CAR) models for taxi-involved crashes were pro-
posed. Unlike previous safety studies that mainly consider distance as the key indicator of spatial correlation, the
present paper introduced the use of massive taxi trip data for constructing a more informative spatial weight
matrix. The developed models with the taxi trip-based weight matrix were tested by using the 2016 taxi trip data
collected in Washington D.C. The modeling results highlight the key explanatory factors such as road density,
taxi activity, number of bus stops, and land use. More importantly, it demonstrates that the proposed Poisson-
CAR models with the taxi trip-based weight matrix outperformed both the non-spatial Poisson model and the
Poisson-CAR models using conventional distance-based weight matrix. Moran’s I tests further indicate that our
proposed models have sufficiently accounted for the spatial autocorrelation of the residuals. Thus, it deserves to
consider informative spatial weight matrices when applying spatial models in traffic safety studies.

1. Introduction

Taxicabs are one of the most commonly used transportation modes in
urban areas. These vehicles typically account for 6 to 12 percent of all
trips in major cities (LTA, 2011). For example, according to the estima-
tion by the New York City Taxi (NYC) and Limousine Commission (TLC)
(Joshi, 2018), nearly 780 million trips were completed from January
2016 to June 2018. Likewise, in Washington D.C., the monthly number
of taxi trips is between 0.6 and 0.8 million from May 2015 to July 2017
according to the Open Data DC (http://opendata.dc.gov). Meanwhile,
with the rise of e-hailing companies such as Uber and Lyft, millions of
trips are also served by the ridesharing vehicles. Arguably, taxi drivers
are at a greater risk of being involved in a crash due to their occupational
exposure to hazardous conditions such as fatigue and stress daily (Lam,
2004), which similarly applies to many e-hailing drivers. The large
number of taxis as well as ridesharing vehicles cruising along streets is
deemed to cause great challenges to transportation safety in urban areas.

An array of studies has already examined the behavioral char-
acteristics of taxi drivers involved in crashes. For example, taxi drivers

with an age below 30 were prone to be involved and injured in crashes
than the elder group (Maag et al., 1997). However, given the significant
effect of exposure to hazardous environments, it deserves to mention
that only few studies have explored the external factors associated with
taxi crashes (Yang et al., 2015). Unlike many commuters driving per-
sonal vehicles, taxis often provide their services according to passen-
gers’ requests. Thus, there are no fixed schedules and routes. Even ex-
perienced taxi drivers may need to drive in an unfamiliar community to
pick up or drop off a passenger. The new environment in the commu-
nity may cause safety challenges to taxi drivers because of changed
traffic patterns, road network structures, speed limits, etc. In addition,
urban areas often consist of a number of central business districts,
tourist attractions, shopping centers, public transport terminals, air-
ports, etc. Many taxi drivers often run business among these sites be-
cause of the strong demand of services. This naturally leads to distin-
guishable taxi mobility patterns in terms of the spatial and temporal
characteristics among different zones in a city (Ma et al., 2019). Con-
sequently, the safety risk is also expected to be different among the
zones. Nonetheless, the relationship between taxi activities and the
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safety issues across these zones are largely unknown. This should be
mainly attributable to the fact that it was almost impossible to de-
termine precisely the spatiotemporal taxi activities in early days.

Taking advantages of the equipment with the global positioning
systems (GPS), massive detailed taxi trajectory records can be gathered.
These records provide a reliable probe for taxi activities within and
between different zones. As a result, it also offers opportunities to
quantitatively examine the relationship between these activities and
taxi-involved crashes. Thus, this paper aims to examine the safety issues
of taxicabs in urban areas by leveraging the massive taxi trip data de-
rived from GPS devices. In particular, it is focused on the spatial in-
teractions between taxi activities and taxi-involved crashes.
Specifically, it introduces a unique way of constructing spatial weights
using aggregated taxi trips. The derived spatial weights are then in-
corporated into proposed spatial models for analyzing taxi crash counts.
The modeling results highlight the augmented performance of the de-
veloped spatial models with better characterization of the interactions
between spatial units.

2. Literature review

Previous safety studies have investigated the occurrence of taxi-in-
volved crashes from different perspectives, such as taxi driver behavior
(Machin and De Souza, 2004; Ma et al., 2010), injury severity levels
(Maag et al., 1997; Zhao et al., 2015), and causal relationships (Wang
et al., 2018; Xie and Wang, 2018). Notably, more existing research were
focused on behavioral analysis and individual crash characteristics.
They have explored the unsafe driving maneuvers observed from ve-
hicle acceleration and/or braking events (Machin and De Souza, 2004;
Ma et al., 2010). Detailed crash characteristics such as the number of
casualties, the number of involved cars, and crash types were also often
analyzed (Zhao et al., 2015). The premise of such studies is the avail-
able detailed records of driving events (e.g., distraction, speeding, etc.)
and individual crashes. However, collecting such precise information
are often challenging. Instead of investigating individual taxi crashes,
there has been a growing interest in probing taxi crash mechanisms
from a macroscopic level to understand interactions between taxi ac-
tivities, the environment, and crash risk (Zhao et al., 2015; Wang et al.,
2018; Xie and Wang, 2018).

Despite the scarcity of the macroscopic analysis of taxi crashes, many
other existing safety studies have provided extensive illustrations of crash
modeling practices. For example, a number of studies have investigated
traffic crash propensity at different spatial levels, such as census block
(Levine et al., 1995; Loo, 2006), TAZ (Siddiqui et al., 2012; Chen, 2015;
Dong et al., 2015), census tract (LaScala et al., 2000; Aguero-Valverde
and Jovanis, 2006), zip code (Meliker et al., 2004; Treno et al., 2007),
and others (Quddus, 2008). In macroscopic safety studies, as the spatial
unit among these analyses becomes smaller, the number of crash count
observed in each sampled unit decreases and the histogram becomes
skewed with more zero-count units. Therefore, regarding the scale of
taxi-involved crash data, small units such as census blocks may not be the
suitable units. On the other hand, it’s suggested that demographic factors
(such as population, age, racial, etc.) affect traffic causalities. With the
easy accessibility of demographic data, census tract is often the preferred
spatial unit as compared to other levels. Additionally, like other crashes,
taxi-involved crashes may also occur on roadways that are the bound-
aries of zones. Arbitrarily assigning the crashes to one zone can be
biased. The literature suggested that geographic boundaries such as
census tracts and TAZs may use the means of demarcation (Bureau,
2007). However, Siddiqui and Abdel-Aty (2016) argued that solely de-
pending on the characteristics of spatial entities may not be a prudent
way to allocate, analyze, and develop macroscopic safety models.

In order to capture the impact of factors in neighboring zones, a
number of safety studies have also proposed the use of spatial models.
In general, conventional crash frequency models (e.g., Poisson) are
extended to account for the potential impact of factors from other

neighboring zones (Aguero-Valverde and Jovanis, 2006; Quddus, 2008;
Huang et al., 2010). For example, Xie et al. (2014) modeled crash fre-
quencies at sampled signalized intersections using conditional auto-
regressive (CAR) models. Siddiqui et al. (2012) introduced the Bayesian
Poisson-lognormal model accounting for spatial correlation for bicycle
and pedestrian crashes in the TAZs. Li et al. (2013) used the geo-
graphically weighted Poisson regression (GWPR) model to capture
these spatially varying relationships in the county-level crash data.
When considering the spatial relationship, existing studies typically
considered the physical adjacency (Aguero-Valverde and Jovanis, 2006;
Quddus, 2008) or distance (Li et al., 2013; Pirdavani et al., 2014; Xie
et al., 2014) of different spatial units. The distance-based weight matrix
is often defined as the inverse of physical distance between different
spatial entities. Accounting for the impact of different zones, the spatial
autocorrelation in residuals can be reduced, which in turn improves the
modeling performance. Thus, it is expected that any macroscopic study
on taxi crashes should also address the spatial effects.

Lately, there have been some attempts to leverage the massive taxi
mobility data in supporting the understanding of taxi crashes. In general,
recent studies used these data mainly in two ways: (i) heatmap visuali-
zation. For example, Xie and Wang (2018) visually described the re-
lationship between taxi O-Ds and crash distributions using heatmaps.
According to the visualization results, both originations and destinations
were found to be spatially correlated with the crash distributions; and (ii)
exposure variable; O-D trip information is commonly aggregated by the
same zonal units as the crash frequencies, serving as an exposure variable
in crash models. Besides simply counting the numbers, categorical
method can also be applied. In a most recent paper by Bao et al. (2018),
taxi trips are categorized into different temporal patterns indicating the
activity status in each zone. The present paper notices that there can be
another new way of using the taxi data to support crash modeling: de-
scribing the spatial connectivity. As mentioned earlier, many studies
determined their spatial weight matrices by considering the distance
between zones in different spatial models such as negative binomial
model (Xu and Huang, 2015), Poisson-lognormal CAR model (Wang and
Kockelman, 2013), and GWPR (Bao et al., 2018). However, distance does
not necessarily warrant the strong connections between neighboring
zones. For example, some geographical neighbors can be blocked by
natural barriers (e.g., rivers and gullies) (Andris and Bettencourt, 2014).
On the other hand, some zones (e.g., areas with many hotels) and the
ones with major transportation terminals (e.g., railway stations, airports,
etc.) are often expected to have strong connections in terms of taxi ac-
tivities (Veloso et al., 2011; Yuan et al., 2012; Tang et al., 2015). Thus, to
better describe the spatial relationship between zones, taxi O-D trips can
be accumulated to replace the role of the distance between zones.

Built upon the lessons from existing safety studies, this paper in-
tends to focus on the spatial modeling of taxi-involved crashes con-
sidering multiple contributing factors. In particular, during the process
of constructing spatial weight matrices, both distance-based and taxi O-
D trip-based measures are involved. This will help answer two ques-
tions. Firstly, whether spatially weighted models have a better perfor-
mance than that of non-spatial models for taxi crash modeling.
Secondly, whether models with weights constructed based on taxi O-D
trips have improved performance comparing to the ones with tradi-
tional distance-based weights.

3. Data description

3.1. Taxi-involved crashes

The spatial units in this study are based on the census tracts in
Washington D.C. area. According to the US Census 2010, there are 179
tracts in this area with the average population of 3361 per census tract.
Since previous research suggest that census factors (e.g. population,
age, racial) affecting traffic casualty (Noland and Quddus, 2004), crash
records were aggregated by census tracts using the geographic
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information system (GIS) techniques. The crash data are published and
maintained by the District Department of Transportation (DDOT).
Three-year (2015–2017) data were acquired and taxi-involved crashes
were extracted for subsequent analysis.

Fig. 1 shows the spatial distribution of taxi-involved crashes with a
total number of 5417 occurred during the 3-year period. It is noticeable
that these crashes are clustered in the central areas, which represent
downtown areas of D.C. Obviously, the spatial pattern illustrates a
strong spatial correlation between neighboring tracts.

3.2. Taxi trip data and processing

Taxi trips data were obtained from the Open Data DC. The data
portal stores hourly trip information of taxis from May 2015 to July
2017. As shown in Fig. 2, there are on average 0.837 million trips per
month in Washington D.C. areas and there are notable differences be-
tween different months. This notable change reflects the temporal
variations in human activities across the study area. In order to better
describe the spatial distributions, spatial connection matrices can be
derived by the following procedure.

3.2.1. Taxi O-D matrix
Taxi O-D matrix is calculated based on the geographical information

of census tracts in D.C. Fig. 3 shows an example on how the taxi O-D
matrix is generated. As shown in Fig. 3(a), A, B, and C are census tract
polygons. There are four taxi trips =O D i( 1, 2, 3, 4)i i recorded with
O-D information. The directional trip count can be described with the
matrix M in Fig. 3(b). After adding itself with its transpose matrix MT

(except for values on diagonal), the symmetric trip count matrix
= +M M MTrip

T in Fig. 3(c) can be derived to describe the activities
associated with two zones. MTrip will be used to describe the spatial
autocorrelation. We will discuss it in more detail in the next section.

3.2.2. Taxi VMT
Taxi VMT can be an important explanatory variable for potential

taxi crashes. In Fig. 3, if each row of the taxi trip matrix MTrip in Fig. 3(c)
is summed up, the taxi activity can be derived in Fig. 3(d). In this ex-
ample, census tract A has the highest taxi activity with 3 trips by
considering both the pickups and drop-offs. Then taxi VMT can be
calculated by aggregating trip distances in similar way. Since the de-
tailed trajectory data are unavailable, the taxi trip distance (VMT) is
estimated using Euclidean distance between pick-up spots and drop-off
spots. One should note that the actual trip distances typically will be
longer than our estimated distances due to taxi drivers’ different route
selections between the same ODs.

3.3. Moran’s I and Bivariate Moran’s I

To test the spatial autocorrelation of taxi-involved crashes and taxi
activity, global univariate and bivariate Moran’s I statistics were com-
puted. The univariate Moran’s I was initially suggested by (Moran,
1948). Essentially, it is a cross-product statistic between a variable and
its spatial lag, with the expression of =z x x̄i i , where x̄ is the mean of
variable x at census tract i. The univariate Moran’s I statistic is then
calculated as:
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where, n is the number of spatial entities indexed by i and j; wij re-
presents their spatial weight. If the entity i and j are adjacent, then

=w 1ij ; otherwise, =w 0ij ; and S0 is the aggregation of all the spatial
weights.

The bivariate Moran’s I is used to measure the spatial correlation of
two variables (Anselin et al., 2002), which is a generalization of uni-
variate Moran’s I. For example, Xie et al. (2019) examined whether the

spatial autocorrelation can be well captured between different types of
crashes.
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where, z A and zB are the deviations from the mean for variable A and
B, respectiely.

Since the taxi data were not fully available in 2015 and 2017, the
subsequent analysis and modeling are based on the crash data and taxi
data collected in the year of 2016. As shown in Fig. 4, for 179 census
tracts in Washington D.C, taxi crash frequency and taxi VMT individually
show significant spatial autocorrelation with Moran’s I values of 0.5425
and 0.3876 at 99.9% confidential level, respectively. Besides, the two
variables are also spatially correlated with bivariate Moran’s I of 0.5104
and p-value of 0.001. Therefore, it is important to incorporate spatial
components in the model to account for the spatial correlation.

3.4. Explanatory variables for taxi-involved crashes

Other than taxi trip data, we have also explored other three major
categories of explanatory variables that may be associated with taxi
crashes. These include variables related to transportation, land use, and
socio-demographic factors.

3.4.1. Transportation environment
Transportation environment has been frequently shown to funda-

mentally affect crash occurrences (Quddus, 2008; Li et al., 2013; Cai
et al., 2017). Thus, a number of factors should be explored. In this
paper, based on the data availability, we have examined variables re-
lated to public transit, intersections, road density, driving behavior. In
general, it deserves to consider the number of transit stops that are key
factors associated with citizens’ travelling activities. The bus stops data
were obtained from the Open Data DC. The number of bus stops were
calculated for each census tract with spatial tools of the ArcGIS. In
addition, dangerous intersections should be considered. The intersec-
tion data from the D.C. Crash Intersections Summary1 were extracted to
capture the intersections with historical crashes. The road density was
also calculated based on the D.C. road network information. According
to Cooper (1997), excessive speed conviction is positively correlated to
crash occurrences. Thus, unsafe driving behavior and high speeding
(15mph above speed limit) events were extracted and aggregated from
the 2016 monthly moving violations reports archived on the Open Data
DC. Resorting to the spatial join tool, above factors were counted or
aggregated based on the unit of census tracts.

In addition to above factors, it is also important to account for the
exposure in crash modeling. Thus, annual average daily traffic (AADT)
data were obtained from the National Capital Region Transportation
Planning Board2, from where the exposure variable vehicle miles tra-
velled (VMT) can be derived. For each census tract, the VMT is calcu-
lated using the function below:

=VMT Length AADT* (3)

where, “Length” indicates the length in miles of each road segment. The
AADT for all segments located within the tract are aggregated and
weighted by its length.

Other than VMT, taxi activity was also used as an exposure factor in
the modeling process. Firstly, the monthly taxi activity counts in 2016
for each census tracts were calculated. Then the average numbers for
each census tract were used in our model. To differ the patterns of taxi

1 Source: https://www.arcgis.com/home/item.html?id=522992c64d8444618-
5395d04d23f8d21.
2 Source: http://rtdc-mwcog.opendata.arcgis.com/datasets/traffic-counts-annual-

average-2009-2016-by-netowrk-link.
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activity, taxi pickup ratio is also considered. It is calculated by dividing
the number of pickups by the sum of pickups and drop-offs in each
census tract. This ratio describes the role of the zone: with high ratio, a
census tract has more taxi demand; and with low ratio, a census tract
has more attractions.

3.4.2. Land use
The land use data were obtained from the Open Data DC4. The ex-

isting land use data were categorized as Residential, Institutional, Open

Space, and Other. As shown in Fig. 5, by using the zonal statistics tool,
each census tract was assigned a land use category based on its majority
of land use.

3.4.3. Socio-demographic factors
Previous research suggest that various socio-demographic variables

such as population, poverty, age, and racial affect traffic causalities
(e.g., Graham and Glaister (2006); Noland and Quddus (2004)). The
socio-demographic data for the studied census tracts were obtained

Fig. 1. The Spatial Distribution of Taxi-involved Crashes in Census Tracts.

Fig. 2. Monthly Count of Taxi Trips in Washington D.C.
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Fig. 3. Example of Trip Matrix Generation.

Fig. 4. Moran’s I Scatter Plots. [(a) univariate Moran’s I for taxi crash; (b) univariate Moran’s I for taxi VMT; and (c) bivariate Moran’s I of taxi crash and taxi VMT.

Fig. 5. The Process of Assigning Land Use Categories to Census Tracts.
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from the 2010 census tract data from the Open Data DC4. It mainly
includes demographic (e.g. population, age, gender), housing (e.g.
housing units, vacant houses), and economic (e.g. median household
income). The GIS data of points of interest (POI) and public school were
also obtained from the Open Data DC. Their numbers in each census
tract were calculated using the spatial tools of ArcGIS. Table 1 provides
the statistical description of all variables considered in this study.

4. Methodology

In this study, three types of models were developed and compared
in modeling taxi-involved crash frequencies: (1) Poisson model; (2)
Conditional Autoregressive model using distance matrix for explanatory
purpose of spatial correlations; and (3) Conditional Autoregressive
model using trip count matrix as explanatory factor of spatial compo-
nents. The performance of above three models were evaluated in the
context of Bayesian approaches conducted with the software package of
WinBUGS (Spiegelhalter et al., 2003).

4.1. Model specification

4.1.1. Model 1. Poisson model
Poisson model is one of the frequently used model to analyze traffic

crash count data. This model has been widely used because it can deal
with non-negative integers. It is often shown to well capture the dis-
tribution of randomly occurred crashes. Thus, this model is considered
as a benchmark in analyzing taxi crashes.

Based on the Poisson model, the probability of ith zone entity
(census tract) having yi crashes is given by:

=P y
y

( | )
exp( )

!i i
i i

y

i

i

(4)

where i denotes the Poisson distribution mean parameter, which is
specified by a function of explanatory variables Xpi ( =p P1, ..., and P is
the total number of explanatory variables):

= +
=

Xln( )i
p

P

p pi0
1 (5)

where 0 and p ( =p P1, ..., ) are the regression parameters to be es-
timated. Eqs. (4) and (5) construct the Poisson model that serves as the
basis for taxi crash frequency modeling.

4.1.2. Model 2. Conditional Autoregressive (CAR) model with distance
matrix

According to the first law of Geography that “everything is related
to everything else, but near things are more related than distant things”
(Tobler, 1970). It is often observed that both dependent variable and
explanatory variables are clustered across the space. Without dealing
with spatial components, the residuals of non-spatial model are often
found to be spatially autocorrelated. Therefore, CAR model is in-
troduced to capture the spatial autocorrelation. The equation is given as
follows:

= + +
=

X Sln( )i
p

P

p pi i0
1 (6)

where, all components are the same with Eq. (2) except for the spatial
autocorrelation Si. The CAR effect used in this study was proposed by
Besag et al. (1991), where the full conditional distribution for Si is
originally defined with the equation below:
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where, S i is the set of Sj for any j i. wij determines the spatial au-
tocorrelation between sites i and j, with maximum value of one if sites i
and j are neighbored, and minimum value of zero. +wi and S

2 are the
aggregation of weights and the variance for the set of Si respectively.

In the CAR model, each site is weighted by its distance from the
regression sites. The Gaussian and bi-square functions are commonly
used to produce the weighting scheme as follow (Gill et al., 2017):

= ×Gaussian
dist
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where, dist is the distance matrix calculated by the centroid locations of
the census tracts in D.C. distij indicates the Euclidean distance between
census tracts i and j. The parameter Gd is a positive quantity known as
the bandwidth. When Gd approaches infinity, wij approaches 1 and the
CAR becomes a global model. In our study, we assume that Gd equals
3.1 miles (= 5 km), which is the approximate radius of the maximum
inscribed circle in our study area.

Table 1
Descriptive Statistics of Prepared Data.

Variable Description Mean Min Max Std.

Crash
Taxi crash count Count of taxi-related crashes in 2016 30.49 0 482 68.78

Transportation
log(taxiVMT) The logarithm of annual taxi miles traveled 9 6.38 14.07 1.56
Taxi pickup ratio The ratio of taxi pickups to the sum of pickups and drop-offs 0.61 0.13 4.15 0.39
log(VMT) The logarithm of annual average daily vehicle miles traveled 9.61 6.55 13.37 1.25
Intersection number Count of intersections in each census tract 141.30 28 678 86.14
Road density Ratio of total road length to census tract area (mile/mile2) 20.67 0.25 40 8.33
Moving violations (> 15mph) Count of moving violations in each census tract (103) 2.77 0 114.86 12.81
Bus stop number Count of bus stops in each census tract 17.46 2 84 11.69

Land use (categorical)
Residential (42.53%) Census tract whose majority land use is residential. — — — —
Institutional (17.37%) Census tract whose majority land use is institutional. — — — —
Open space (22.11%) Census tract whose majority land use is open space. — — — —
Other (17.99%) Census tract whose land use is mixed. — — — —

Demo-economic
Population Total population (103) 3.36 0.03 7.44 1.29
Median household income Median income per household (103 $) 54.06 0 197.16 30.28
Total housing units The number of housing units in each census tract (103) 1.66 0 5.38 0.80
POI number Count of POI in each census tract 48.93 1 1332 109.83
Public school number Count of public schools in each census tract 0.68 0 4 0.87
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4.1.3. Model 3. Conditional Autoregressive model with taxi trip matrix
In previous CAR model, the first law of Geography may raise con-

cerns about the spatial autocorrelation. Euclidean distance is the most
commonly used quantitative metric in modeling crash frequencies (Li
et al., 2013; Xu and Huang, 2015; Xie et al., 2019). However, in some
fields of study, with the fast growth of informative data, there are al-
ternative metrics to better construct the spatial autocorrelation matrix.
For example, Buchin et al. (2014) created distorted map using travel
times for the purpose of improving driving navigation. The maps in
Fig. 6 show the trip counts between four selected census tracts with
other zones during March 2016. The higher trip count indicates that a
census tract is more intensively connected to the selected ones. For
example, the pattern of tract (id= 006202) in Fig. 6(a) is consistent
with the rule of spatial autocorrelation that nearer census tracts have
higher connections. However, in Fig. 6(b)–(d), this rule no longer holds
as we can see that taxis commuted more frequently between selected
census tracts and the census tracts in downtown areas instead of nearer
ones. In these cases, the Euclidean distance cannot reflect the taxi ac-
tivities between census tracts as good as the trip count. Therefore, this
paper proposes to use the weight matrix constructed by using the taxi
O-D matrix introduced in the Section of Data Processing.

= ×Gaussian G
count

: w exp 1
2 log( )

t

ij
ij

(10)

= >Bi square G count if count G
otherwise

: w [1 ( /log( )) ]
0

(log( ) )t ij ij t
ij

2 2

(11)

As shown in the Eqs. (10) and (11), the variable count is obtained
from the developed taxi O-D matrix. The parameterGt is the customized
bandwidth equaling the mean value of countlog( )ij . The role of the count
matrix is different from the role of the dist matrix in the weight equa-
tions in Model 2. The range of the weight is from 0 to 1 and with higher
count, the weight gets closer to 1.

4.2. Bayesian approach

4.2.1. Estimation of Bayesian models
All introduced models are estimated within the full Bayesian fra-

mework. The Bayesian method estimates models’ parameters using
posterior distributions, which is theoretically approximated by the
following equation.

p y L y( | ) ( | ) ( ) (12)

where, y is the vector of observed data; is the vector of parameters
required for the likelihood function; L y( | ) is the likelihood function;
and ( ) is the prior distribution of . The Bayesian inference is im-
plemented by using the Markov Chain Monte Carlo (MCMC) algorithm
(Gilks et al., 1998). Gibbs sampling (Geman and Geman, 1984) plays a
primary role in the Markov chain Monte Carlo (MCMC) algorithm. In
each iteration, unobserved stochastic values are drawn from their full
conditional distribution given the current values of all the other
quantities in the model (Lunn et al., 2000). The WinBUGS software
package was used to provide an efficient computing tool for the cali-
bration of Bayesian models using MCMC simulation (Spiegelhalter
et al., 2002).

In the Poisson and CAR models, the prior distributions of the coef-
ficients =i P( 0, 1, ..., )i were set to follow normal distribution (0,
10−5) because no prior information could be assumed. The CAR effect
term Si is determined by the following function.

S car adj weight num tau( , , , )i (13)

where, car is the modeling function provided by WinBUGS with para-
meters adj, weight , and num that determine the weight matrix and
neighboring relationships. tau is assumed to follow the distribution of
Gamma (0.5, 0.0005), which will allow the sampling of tau value in a
wide range.

Fig. 6. Trip Aggregation between a Target Census Tract and Others in March 2016.
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4.2.2. Assessment of Bayesian models
The deviance information criterion (DIC) is employed for model

assessment. It is widely used as a Bayesian measure of model fitting and
complexity (Spiegelhalter et al., 2002). Specifically, DIC is calculated as
follows:

= +DIC D p( ) D (14)

where, D ( ) is the Bayesian deviance of the estimated parameter ,
with = +D L y C( ) 2 log( ( | )) and C is a constant. D ( ) denotes the
posterior mean of D ( ) and can be used to indicate how well the model
fits the data. pD defines the effective number of parameters and can be
taken as a measure of model complexity. A DIC difference of five or
greater suggests that the model with a smaller DIC should be favored.

5. Modeling results

5.1. Variable selection and estimation

To build converged models, no multi-collinearity should be detected
among explanatory variables and suitable transformations should also
be applied to certain variables. We conducted the correlation test using
R studio. If two explanatory variables are highly correlated, the one
with higher correlation with the dependent variable will be selected. On
the other hand, the coefficients of the variables should be significantly
different from zero to be included in the final model. This feature can be
checked in WinBUGS during the simulation process. Based on these
considerations, the final selected variables and modeling results are
shown in Table 2. Based on the 95% Bayesian credible interval (BCI),
road density, log(taxiVMT), and taxi pickup ratio are significant vari-
ables. Other than the non-spatial model, different land uses do not show
distinctive impacts on taxi-involved crashes in spatial models 2–5.

It is worthy of mentioning that the taxi pickup ratio and log
(taxiVMT) are significant in the modeling result. The negative coeffi-
cient of taxi pickup ratio indicates that taxi-involved crashes are more
likely to occur in census tracts with more drop-off events. On the other
hand, the positive coefficient of log(taxiVMT) shows that the occur-
rences of taxi-involved crash are closely related to taxi activities.

Our modeling results of taxi-crash indicate similarities and differ-
ences comparing to many other studies focusing on general vehicle
crash modeling. In our results, for example, the significant variable
road density has also been found to affect overall crash frequency in
previous studies such as Xie et al. (2019). The positive coefficients of

these variables indicate that the crashes are more likely to occur in
zones with dense transportation facilities. On the other hand, unlike the
significant variables of socio-demographic factor (e.g., population
density, age, education) observed in the other studies (Lee et al., 2015),
the occurrences of taxi-involved crash are found to be not sensitive to
these factors. In addition, the selected land use variables (residential,
open space, institution) are binary factors comparing to the “other”
category. Since zeros are included within their credential intervals,
comparing to “other” type of land use, the selected land use variables
are not significant in models 2–5.

5.2. Performance evaluation

The boxplots of DIC statistic is presented in Fig. 7. Each boxplot
reflects the distribution of the simulation results of 15 sampling runs.
Each model has been iterated for more than 200,000 times so that the
model is converged before any data collection. The model convergence
has been evaluated based on the with calculated Brooks-Gelman-Rubin
(BGR) diagnostic plots (Spiegelhalter et al., 1996). We can observe that
the non-spatial Poisson model has a stable DIC value of 1717. All other
models considering spatial components have lower DICs compared to
the non-spatial model, which indicates the need of spatial models for
better performance. Specifically, among the four spatial models, the
models using taxi trip-based weight matrix have lower DIC compared to
those using distance-based weight matrix. Thus, the proposed methods

Table 2
Selected Variables and Modeling Results.

Variable Model 1 Model 2 Model 3 Model 4 Model 5

Intercept Mean (Std.): −3.947 (0.134) −4.653 (0.441) −4.028 (0.504) −4.722 (0.409) −4.57 (0.373)
95% BCI: (−4.209, −3.684) (−5.502, −3.754) (−5.018, −3.04) (−5.526, −3.946) (−5.327, −3.82)

Taxi pickup ratio Mean (Std.): −0.550 (0.054) −0.501 (0.120) −0.373 (0.126) −0.529 (0.122) −0.509 (0.133)
95% BCI: (−0.655, −0.445) (−0.736, −0.269) (−0.619, −0.125) (−0.774, −0.29) (-0.77, −0.247)

log(taxiVMT) Mean (Std.): 0.704 (0.017) 0.665 (0.050) 0.581 (0.054) 0.693 (0.048) 0.682 (0.046)
95% Std.: (0.671, 0.738) (0.568, 0.763) (0.475, 0.687) (0.599, 0.788) (0.592, 0.773)

log(POI) Mean (Std.): 0.064 (0.030) 0.168 (0.072) 0.217 (0.071) 0.141 (0.071) 0.168 (0.075)
95% BCI: (0.004, 0.124) (0.029, 0.311) (0.078, 0.357) (0.002, 0.279) (0.025, 0.318)

Residential Mean (Std.): −0.533 (0.079) −0.052 (0.315) 0.027 (0.333) −0206 (0.270) −0.410 (0.231)
95% BCI: (−0.685, −0.38) (−0.67, 0.567) (−0.617, 0.682) (−0.723, 0.323) (−0.858, 0.047)

Open space Mean (Std.): −0.068 (0.078) 0.489 (0.323) 0.403 (0.342) 0.409 (0.282) 0.140 (0.244)
95% BCI: (−0.219, 0.084) (−0.147, 1.108) (−0.259, 1.077) (−0.124, 0.973) (−0.346, 0.603)

Institutional Mean (Std.): −0.006 (0.061) 0.417 (0.302) 0.376 (0.324) 0.316 (0.252) 0.116 (0.208)
95% BCI: (−0.124, 0.113) (-0.177, 1.010) (−0.255, 1.014) (−0.164, 0.819) (−0.303, 0.52)

Road density Mean (Std.): 0.031 (0.002) 0.035 (0.007) 0.027 (0.008) 0.038 (0.007) 0.037 (0.007)
95% BCI: (0.027, 0.036) (0.021, 0.05) (0.011, 0.044) (0.023, 0.052) (0.024, 0.05)

Sigma Mean (Std.): – 4.070 (0.312) 1.915 (0.150) 4.933 (0.373) 2.291 (0.163)
95% BCI: – (3.495, 4.709) (1.641, 2.227) (4.244, 4.917) (1.992, 2.626)

Model 1: Poisson model; Model 2: Poisson-CAR model+Gaussian distance-based weight; Model 3: Poisson-CAR model+Bi-squared distance-based weight; Model 4:
Poisson-CAR model+Gaussian taxi trip-based weight; Model 5: Poisson-CAR model+ Bi-squared taxi trip-based weight; and Sigma= sqrt(1/tau): standard de-
viation.

Fig. 7. DIC Evaluation Results with 15 Runs of Sampling Process.
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for taxi crash modeling using the weight matrix developed based on taxi
trips have shown better performance than other models.

6. Discussion

6.1. Autocorrelation test of residuals

As mentioned previously, Moran’s I is a method for testing spatial
autocorrelation. As shown in Table 3, the residuals of non-spatial
Poisson model are spatially autocorrelated. Recall that the distribution
of taxi crash frequencies were tested to be spatially autocorrelated, this
model fails to address the spatial effects and the residuals are still
spatial-nonstationary. In contrast, the Models 2–5 have eliminated the
residuals’ spatial autocorrelation by adding spatial weights in the
models. Therefore, the spatial models are preferred in modeling taxi-
involved crashes based on the studied scenario.

6.2. The role of log(VMT) and log(taxiVMT)

The log(VMT) is the most frequently used variable in modeling
crash frequencies. It reflects vehicles’ activity within spatial entities. In
general, log(VMT) has been demonstrated to be positively correlated to
crash frequency. For example, in the modeling results of Mitra and
Washington (2012); Li et al. (2013); Lee et al. (2015), and Cai et al.
(2017), the coefficients of log(VMT) are positive and significantly dif-
ferent from zero. However, log(VMT) is no longer significant when
modeling taxi-involved crashes in this study. One can anticipate that
there can be few taxis passing by areas with large log(VMT) dominated
by other types of vehicles. If taxi activity is replaced by log(VMT), the
taxi crash model was not able to converge. On the other hand, taxi
activity reflects the frequencies of taxi trips, which is more closely re-
lated to taxi-involved crashes. As shown in Fig. 8, the maps in
Fig. 8(a)–(c) demonstrate the distributions of log(crash), log(taxiVMT),
and log(VMT). We can see that log(crash) and log(taxiVMT) share si-
milar spatial patterns by clustering at the central areas in D.C.
Fig. 8(d)–(f) are the scatter plots of the three variables, where a clear
positive linear relationship can be observed between the log(taxiVMT)
and log(crash). On the other hand, the relationship between log(VMT)
and log(crash) does not show strong linear relationship. Therefore,
when modeling crashes involving a specific type of transportation
mode, the variable reflecting its corresponding activities is highly re-
commended as a key explanatory variable (e.g., bike activities should
be a good explanatory variable for modeling bike-involved crashes).

7. Conclusion

In this study, taxi-involved crashes in Washington, D.C. were ana-
lyzed and modeled by considering a set of factors related to transporta-
tion environment, land-use, and socio-demographic data. For this specific
type of crashes, we proposed to use the historical trip data, instead of
Euclidean distance, to generate the spatial weight matrix. Our proposed
method is based on the conditional autoregressive model. Both Gaussian

and Bi-squared functions were included in the computation of the spatial
weight matrix. The non-spatial Poisson model, spatial Poisson-CAR
model with distance-based weight matrix, and spatial Poisson-CAR
model with the taxi trip-based weight matrix were compared. The
modeling results suggest that the Poisson-CAR model outperforms the
non-spatial model by successfully accounting for the spatial de-
pendencies among variables. More specifically, our proposed Poisson-
CAR models using the weight matrix constructed by taxi trips have better
performance than Poisson-CAR models using the distance-based weight
matrix. The results also show that taxi-VMT and road density are posi-
tively related to taxi-involved crash occurrence in a spatial unit.
Meanwhile, the taxi-involved crashes are more likely to occur in census
tracts with comparably higher taxi drop-off events. By conducting
Moran’s I tests, residuals of non-spatial Poisson model were found to be
positively autocorrelated. After introducing CAR component to the
Poisson model, the residuals were found to be randomly distributed over
space, which has implied that the spatial Poisson-CAR models can ac-
count for spatial autocorrelation in modeling taxi-involved crashes.

Modeling taxi-involved crashes can help identify risky locations for
taxi drivers considering up-to-date information. One of the key ex-
planatory variables “log(taxiVMT)” allows models to leverage the value
of massive taxi trip records. Its temporal scale can be flexible by using
yearly, seasonally, monthly, or daily taxi trips, depending on the
availability of historical data. Therefore, if given up-to-date information
of taxis, such as taxis’ distribution in most recent periods, the discussed
models can be extended to provide timely taxi crash risk estimates.

Currently, this study is limited by the availability of taxi-involved crash
data in Washington, D.C. The proposed model can be further tested at
other places, where taxi and crashes data are both available. Besides, it is a
worthy direction to explore and compare with other approaches for ana-
lyzing taxi crashes. For example, taxi crash rate can be calculated as the
number of crashes per acreage in each census tract. This continuous re-
sponse variable can be accommodated by Tobit models (Anastasopoulos
et al., 2012a, b; Chen et al., 2014) and more risky variables would be
potentially captured with MCMC methods. Meanwhile, zero-inflated
structure can be added if the corresponding variable contains too many
zeros (Anastasopoulos, 2016; Mannering et al., 2016; Fountas and
Anastasopoulos, 2018). Also, if real-time taxi trajectory information and
other data were available, it also possible to consider short-term taxi crash
risk estimation like the ones introduced in other crash studies (Chen et al.,
2018; Xie et al., 2018). The possibility of using such models for taxi crash
analysis was scarce and deserves more experimenting.

Taxi safety is often affected by many factors such as individual and
household specific characteristics, as well as spatiotemporal features. It
should be noted that not all explanatory factors have been included in
this paper due to the unavailability of the relevant data. The omitted
factors will undoubtedly induce additional bias to the modeling results.
In addition, unobserved heterogeneity is also likely to present due to
other missing information, changeable effects of the same parameters
on the response variables observed at different time/locations, etc.
Thus, selection of appropriate functional forms and addressing mis-
specification issues, like in other crash modeling research, is strongly
suggested. For example, one may consider introducing random para-
meters as a useful way to allow spatial unobserved heterogeneities in
models (Anastasopoulos and Mannering, 2009). Also, modeling efforts
such as the use of latent variables and random effect models worth
exploring in future work. What’s more, taking advantages of the in-
formative spatial weight matrices constructed with taxi trip records or
data alike, similar spatial modeling approaches can be extended to
other traffic safety modeling practices in the future.
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Table 3
Moran’s I Test of Modeled Residuals.

Model Moran’s I p-value Description

Model 1 0.307 0.005 Spatial autocorrelated at CI of 99.5%
Model 2 −0.032 0.200 No autocorrelation at CI of 99.5%
Model 3 0.020 0.155 No autocorrelation at CI of 99.5%
Model 4 0.037 0.750 No autocorrelation at CI of 99.5%
Model 5 0.056 0.055 No autocorrelation at CI of 99.5%

Model 1: Poisson model; Model 2: Poisson-CAR model+Gaussian distance-
based weight; Model 3: Poisson-CAR model+Bi-squared distance-based
weight; Model 4: Poisson-CAR model+Gaussian taxi trip-based weight; Model
5: Poisson-CAR model+Bi-squared taxi trip-based weight.
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